qxq_c |
Table of contents
Procedureqxq_c ( Quaternion times quaternion ) void qxq_c ( ConstSpiceDouble q1 [4], ConstSpiceDouble q2 [4], SpiceDouble qout [4] ) AbstractMultiply two quaternions. Required_ReadingROTATION KeywordsMATH POINTING ROTATION Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- q1 I First SPICE quaternion factor. q2 I Second SPICE quaternion factor. qout O Product of `q1' and `q2'. Detailed_Inputq1 is a 4-vector representing a SPICE-style quaternion. See the discussion of "Quaternion Styles" in the -Particulars section below. Note that multiple styles of quaternions are in use. This routine will not work properly if the input quaternions do not conform to the SPICE convention. q2 is a second SPICE-style quaternion. Detailed_Outputqout is 4-vector representing the quaternion product q1 * q2 Representing q(i) as the sums of scalar (real) part s(i) and vector (imaginary) part v(i) respectively, q1 = s1 + v1 q2 = s2 + v2 qout has scalar part s3 defined by s3 = s1 * s2 - <v1, v2> and vector part v3 defined by v3 = s1 * v2 + s2 * v1 + v1 x v2 where the notation < , > denotes the inner product operator and x indicates the cross product operator. ParametersNone. ExceptionsError free. FilesNone. ParticularsQuaternion Styles ----------------- There are different "styles" of quaternions used in science and engineering applications. Quaternion styles are characterized by - The order of quaternion elements - The quaternion multiplication formula - The convention for associating quaternions with rotation matrices Two of the commonly used styles are - "SPICE" > Invented by Sir William Rowan Hamilton > Frequently used in mathematics and physics textbooks - "Engineering" > Widely used in aerospace engineering applications CSPICE function interfaces ALWAYS use SPICE quaternions. Quaternions of any other style must be converted to SPICE quaternions before they are passed to CSPICE functions. Relationship between SPICE and Engineering Quaternions ------------------------------------------------------ Let `m' be a rotation matrix such that for any vector `v', m*v is the result of rotating `v' by theta radians in the counterclockwise direction about unit rotation axis vector `a'. Then the SPICE quaternions representing `m' are (+/-) ( cos(theta/2), sin(theta/2) * a(0), sin(theta/2) * a(1), sin(theta/2) * a(2) ) while the engineering quaternions representing `m' are (+/-) ( -sin(theta/2) * a(0), -sin(theta/2) * a(1), -sin(theta/2) * a(2), cos(theta/2) ) For both styles of quaternions, if a quaternion `q' represents a rotation matrix `m', then -q represents `m' as well. Given an engineering quaternion qeng = ( q0, q1, q2, q3 ) the equivalent SPICE quaternion is qspice = ( q3, -q0, -q1, -q2 ) Associating SPICE Quaternions with Rotation Matrices ---------------------------------------------------- Let `from' and `to' be two right-handed reference frames, for example, an inertial frame and a spacecraft-fixed frame. Let the symbols v , v from to denote, respectively, an arbitrary vector expressed relative to the `from' and `to' frames. Let `m' denote the transformation matrix that transforms vectors from frame `from' to frame `to'; then v = m * v to from where the expression on the right hand side represents left multiplication of the vector by the matrix. Then if the unit-length SPICE quaternion `q' represents `m', where q = (q0, q1, q2, q3) the elements of `m' are derived from the elements of `q' as follows: .- -. | 2 2 | | 1 - 2*( q2 + q3 ) 2*(q1*q2 - q0*q3) 2*(q1*q3 + q0*q2) | | | | | | 2 2 | m = | 2*(q1*q2 + q0*q3) 1 - 2*( q1 + q3 ) 2*(q2*q3 - q0*q1) | | | | | | 2 2 | | 2*(q1*q3 - q0*q2) 2*(q2*q3 + q0*q1) 1 - 2*( q1 + q2 ) | | | `- -' Note that substituting the elements of -q for those of `q' in the right hand side leaves each element of `m' unchanged; this shows that if a quaternion `q' represents a matrix `m', then so does the quaternion -q. To map the rotation matrix `m' to a unit quaternion, we start by decomposing the rotation matrix as a sum of symmetric and skew-symmetric parts: 2 m = [ I + (1-cos(theta)) * omega ] + [ sin(theta) * omega ] symmetric skew-symmetric `omega' is a skew-symmetric matrix of the form .- -. | 0 -n2 n1 | | | omega = | n2 0 -n0 | | | | -n1 n0 0 | `- -' The vector `n' of matrix entries (n0, n1, n2) is the rotation axis of `m' and `theta' is m's rotation angle. Note that `n' and `theta' are not unique. Let cth = cos(theta/2) sth = sin(theta/2) Then the unit quaternions `q' corresponding to `m' are q = +/- ( cth, sth*n0, sth*n1, sth*n2 ) The mappings between quaternions and the corresponding rotations are carried out by the CSPICE routines q2m_c {quaternion to matrix} m2q_c {matrix to quaternion} m2q_c always returns a quaternion with scalar part greater than or equal to zero. SPICE Quaternion Multiplication Formula --------------------------------------- Given a SPICE quaternion q = ( q0, q1, q2, q3 ) corresponding to rotation axis `a' and angle `theta' as above, we can represent `q' using "scalar + vector" notation as follows: s = q0 = cos(theta/2) v = ( q1, q2, q3 ) = sin(theta/2) * a q = s + v Let `quat1' and `quat2' be SPICE quaternions with respective scalar and vector parts `s1', `s2' and `v1', `v2': quat1 = s1 + v1 quat2 = s2 + v2 We represent the dot product of `v1' and `v2' by <v1, v2> and the cross product of `v1' and `v2' by v1 x v2 Then the SPICE quaternion product is quat1*quat2 = s1*s2 - <v1,v2> + s1*v2 + s2*v1 + (v1 x v2) If `quat1' and `quat2' represent the rotation matrices `m1' and `m2' respectively, then the quaternion product quat1*quat1 represents the matrix product m1*m2 ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Given the "basis" quaternions: qid: ( 1.0, 0.0, 0.0, 0.0 ) qi : ( 0.0, 1.0, 0.0, 0.0 ) qj : ( 0.0, 0.0, 1.0, 0.0 ) qk : ( 0.0, 0.0, 0.0, 1.0 ) the following quaternion products give these results: Product Expected result ----------- ---------------------- qi * qj ( 0.0, 0.0, 0.0, 1.0 ) qj * qk ( 0.0, 1.0, 0.0, 0.0 ) qk * qi ( 0.0, 0.0, 1.0, 0.0 ) qi * qi (-1.0, 0.0, 0.0, 0.0 ) qj * qj (-1.0, 0.0, 0.0, 0.0 ) qk * qk (-1.0, 0.0, 0.0, 0.0 ) qid * qi ( 0.0, 1.0, 0.0, 0.0 ) qi * qid ( 0.0, 1.0, 0.0, 0.0 ) qid * qj ( 0.0, 0.0, 1.0, 0.0 ) The following code example uses QXQ to produce these results. Example code begins here. /. Program qxq_ex1 ./ #include <stdio.h> #include "SpiceUsr.h" int main( ) { /. Local variables ./ SpiceDouble qout [4]; /. Let `qid', `qi', `qj', `qk' be the "basis" quaternions. ./ SpiceDouble qid [4] = { 1.0, 0.0, 0.0, 0.0 }; SpiceDouble qi [4] = { 0.0, 1.0, 0.0, 0.0 }; SpiceDouble qj [4] = { 0.0, 0.0, 1.0, 0.0 }; SpiceDouble qk [4] = { 0.0, 0.0, 0.0, 1.0 }; /. Compute: qi x qj = qk qj x qk = qi qk x qi = qj ./ qxq_c ( qi, qj, qout ); printf( "qi x qj = %7.1f %7.1f %7.1f %7.1f\n", qout[0], qout[1], qout[2], qout[3] ); printf( " qk = %7.1f %7.1f %7.1f %7.1f\n", qk[0], qk[1], qk[2], qk[3] ); printf( " \n" ); qxq_c ( qj, qk, qout ); printf( "qj x qk = %7.1f %7.1f %7.1f %7.1f\n", qout[0], qout[1], qout[2], qout[3] ); printf( " qi = %7.1f %7.1f %7.1f %7.1f\n", qi[0], qi[1], qi[2], qi[3] ); printf( " \n" ); qxq_c ( qk, qi, qout ); printf( "qk x qi = %7.1f %7.1f %7.1f %7.1f\n", qout[0], qout[1], qout[2], qout[3] ); printf( " qj = %7.1f %7.1f %7.1f %7.1f\n", qj[0], qj[1], qj[2], qj[3] ); printf( " \n" ); /. Compute: qi x qi == -qid qj x qj == -qid qk x qk == -qid ./ qxq_c ( qi, qi, qout ); printf( "qi x qi = %7.1f %7.1f %7.1f %7.1f\n", qout[0], qout[1], qout[2], qout[3] ); printf( " qid = %7.1f %7.1f %7.1f %7.1f\n", qid[0], qid[1], qid[2], qid[3] ); printf( " \n" ); qxq_c ( qj, qj, qout ); printf( "qj x qj = %7.1f %7.1f %7.1f %7.1f\n", qout[0], qout[1], qout[2], qout[3] ); printf( " qid = %7.1f %7.1f %7.1f %7.1f\n", qid[0], qid[1], qid[2], qid[3] ); printf( " \n" ); qxq_c ( qk, qk, qout ); printf( "qk x qk = %7.1f %7.1f %7.1f %7.1f\n", qout[0], qout[1], qout[2], qout[3] ); printf( " qid = %7.1f %7.1f %7.1f %7.1f\n", qid[0], qid[1], qid[2], qid[3] ); printf( " \n" ); /. Compute: qid x qi = qi qi x qid = qi qid x qj = qj ./ qxq_c ( qid, qi, qout ); printf( "qid x qi = %7.1f %7.1f %7.1f %7.1f\n", qout[0], qout[1], qout[2], qout[3] ); printf( " qi = %7.1f %7.1f %7.1f %7.1f\n", qi[0], qi[1], qi[2], qi[3] ); printf( " \n" ); qxq_c ( qi, qid, qout ); printf( "qi x qid = %7.1f %7.1f %7.1f %7.1f\n", qout[0], qout[1], qout[2], qout[3] ); printf( " qi = %7.1f %7.1f %7.1f %7.1f\n", qi[0], qi[1], qi[2], qi[3] ); printf( " \n" ); qxq_c ( qid, qj, qout ); printf( "qid x qj = %7.1f %7.1f %7.1f %7.1f\n", qout[0], qout[1], qout[2], qout[3] ); printf( " qj = %7.1f %7.1f %7.1f %7.1f\n", qj[0], qj[1], qj[2], qj[3] ); printf( " \n" ); return ( 0 ); } When this program was executed on a Mac/Intel/cc/64-bit platform, the output was: qi x qj = 0.0 0.0 0.0 1.0 qk = 0.0 0.0 0.0 1.0 qj x qk = 0.0 1.0 0.0 0.0 qi = 0.0 1.0 0.0 0.0 qk x qi = 0.0 0.0 1.0 0.0 qj = 0.0 0.0 1.0 0.0 qi x qi = -1.0 0.0 0.0 0.0 qid = 1.0 0.0 0.0 0.0 qj x qj = -1.0 0.0 0.0 0.0 qid = 1.0 0.0 0.0 0.0 qk x qk = -1.0 0.0 0.0 0.0 qid = 1.0 0.0 0.0 0.0 qid x qi = 0.0 1.0 0.0 0.0 qi = 0.0 1.0 0.0 0.0 qi x qid = 0.0 1.0 0.0 0.0 qi = 0.0 1.0 0.0 0.0 qid x qj = 0.0 0.0 1.0 0.0 qj = 0.0 0.0 1.0 0.0 2) Compute the composition of two rotation matrices by converting them to quaternions and computing their product, and by directly multiplying the matrices. Example code begins here. /. Program qxq_ex2 ./ #include <stdio.h> #include "SpiceUsr.h" int main( ) { /. Local variables ./ SpiceDouble cmout [3][3]; SpiceDouble q1 [4]; SpiceDouble q2 [4]; SpiceDouble qout [4]; SpiceDouble cmat1 [3][3] = { {1.0, 0.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, 0.0, -1.0} }; SpiceDouble cmat2 [3][3] = { {0.0, 1.0, 0.0}, {1.0, 0.0, 0.0}, {0.0, 0.0, -1.0} }; /. Convert the C-matrices to quaternions. ./ m2q_c ( cmat1, q1 ); m2q_c ( cmat2, q2 ); /. Find the product. ./ qxq_c ( q1, q2, qout ); /. Convert the result to a C-matrix. ./ q2m_c ( qout, cmout ); printf( "Using quaternion product:\n" ); printf( "%9.4f %9.4f %9.4f\n", cmout[0][0], cmout[0][1], cmout[0][2] ); printf( "%9.4f %9.4f %9.4f\n", cmout[1][0], cmout[1][1], cmout[1][2] ); printf( "%9.4f %9.4f %9.4f\n", cmout[2][0], cmout[2][1], cmout[2][2] ); /. Multiply `cmat1' and `cmat2' directly. ./ mxm_c ( cmat1, cmat2, cmout ); printf( "Using matrix product:\n" ); printf( "%9.4f %9.4f %9.4f\n", cmout[0][0], cmout[0][1], cmout[0][2] ); printf( "%9.4f %9.4f %9.4f\n", cmout[1][0], cmout[1][1], cmout[1][2] ); printf( "%9.4f %9.4f %9.4f\n", cmout[2][0], cmout[2][1], cmout[2][2] ); return ( 0 ); } When this program was executed on a Mac/Intel/cc/64-bit platform, the output was: Using quaternion product: 0.0000 1.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 Using matrix product: 0.0000 1.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionN.J. Bachman (JPL) J. Diaz del Rio (ODC Space) Version-CSPICE Version 1.0.2, 10-AUG-2021 (JDR) Edited the header to comply with NAIF standard. Created complete code examples from existing example and code fragments. -CSPICE Version 1.0.1, 27-FEB-2008 (NJB) Updated header; added information about SPICE quaternion conventions. -CSPICE Version 1.0.0, 27-OCT-2005 (NJB) Index_Entriesquaternion times quaternion multiply quaternion by quaternion |
Fri Dec 31 18:41:11 2021