mxmt_c |
Table of contents
Proceduremxmt_c ( Matrix times matrix transpose, 3x3 ) void mxmt_c ( ConstSpiceDouble m1 [3][3], ConstSpiceDouble m2 [3][3], SpiceDouble mout[3][3] ) AbstractMultiply a 3x3 matrix and the transpose of another 3x3 matrix. Required_ReadingNone. KeywordsMATRIX Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- m1 I 3x3 double precision matrix. m2 I 3x3 double precision matrix. mout O The product `m1' times transpose of `m2'. Detailed_Inputm1 is an arbitrary 3x3 double precision matrix. m2 is an arbitrary 3x3 double precision matrix. Typically, `m2' will be a rotation matrix since then its transpose is its inverse (but this is NOT a requirement). Detailed_Outputmout is a 3x3 double precision matrix. `mout' is the product T mout = m1 x m2 `mout' may overwrite either `m1' or `m2'. ParametersNone. ExceptionsError free. FilesNone. ParticularsThe code reflects precisely the following mathematical expression For each value of the subscripts `i' and `j' from 0 to 2: 2 .----- \ mout[i][j] = ) m1[i][k] * m2[j][k] / '----- k=0 Note that the reversal of the `k' and `j' subscripts in the right- hand matrix `m2' is what makes `mout' the product of the TRANSPOSE of `m2' and not simply of `m2' itself. Also, the intermediate results of the operation above are buffered in a temporary matrix which is later moved to the output matrix. Thus mout can be actually be m1 or m2 if desired without interfering with the computations. ExamplesThe numerical results shown for this example may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Given two 3x3 double precision matrices, multiply the first matrix by the transpose of the second one. Example code begins here. /. Program mxmt_ex1 ./ #include <stdio.h> #include "SpiceUsr.h" int main( ) { /. Local variables. ./ SpiceDouble m2 [3][3]; SpiceDouble mout [3][3]; SpiceInt i; /. Define `m1'. ./ SpiceDouble m1 [3][3] = { { 0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}, { 0.0, 0.0, 1.0} }; /. Make `m2' equal to `m1'. ./ mequ_c ( m1, m2 ); /. Multiply `m1' by the transpose of `m2'. ./ mxmt_c ( m1, m2, mout ); printf( "M1:\n" ); for ( i = 0; i < 3; i++ ) { printf( "%16.7f %15.7f %15.7f\n", m1[i][0], m1[i][1], m1[i][2] ); } printf( "\n" ); printf( "M2:\n" ); for ( i = 0; i < 3; i++ ) { printf( "%16.7f %15.7f %15.7f\n", m2[i][0], m2[i][1], m2[i][2] ); } printf( "\n" ); printf( "M1 times transpose of M2:\n" ); for ( i = 0; i < 3; i++ ) { printf( "%16.7f %15.7f %15.7f\n", mout[i][0], mout[i][1], mout[i][2] ); } return ( 0 ); } When this program was executed on a Mac/Intel/cc/64-bit platform, the output was: M1: 0.0000000 1.0000000 0.0000000 -1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 M2: 0.0000000 1.0000000 0.0000000 -1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 M1 times transpose of M2: 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 Restrictions1) The user is responsible for checking the magnitudes of the elements of `m1' and `m2' so that a floating point overflow does not occur. (In the typical use where `m1' and `m2' are rotation matrices, this not a risk at all.) Literature_ReferencesNone. Author_and_InstitutionJ. Diaz del Rio (ODC Space) W.M. Owen (JPL) E.D. Wright (JPL) Version-CSPICE Version 1.0.1, 04-JUL-2021 (JDR) Edited the header to comply with NAIF standard. Added complete code examples based on existing code fragments. -CSPICE Version 1.0.0, 16-APR-1999 (EDW) (WMO) Index_Entriesmatrix times matrix_transpose 3x3_case |
Fri Dec 31 18:41:09 2021