georec_c |
Table of contents
Proceduregeorec_c ( Geodetic to rectangular coordinates ) void georec_c ( SpiceDouble lon, SpiceDouble lat, SpiceDouble alt, SpiceDouble re, SpiceDouble f, SpiceDouble rectan[3] ) AbstractConvert geodetic coordinates to rectangular coordinates. Required_ReadingNone. KeywordsCONVERSION COORDINATES Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- lon I Geodetic longitude of point (radians). lat I Geodetic latitude of point (radians). alt I Altitude of point above the reference spheroid. re I Equatorial radius of the reference spheroid. f I Flattening coefficient. rectan O Rectangular coordinates of point. Detailed_Inputlon is the geodetic longitude of the input point. This is the angle between the prime meridian and the meridian containing `rectan'. The direction of increasing longitude is from the +X axis towards the +Y axis. Longitude is measured in radians. On input, the range of longitude is unrestricted. lat is the geodetic latitude of the input point. For a point P on the reference spheroid, this is the angle between the XY plane and the outward normal vector at P. For a point P not on the reference spheroid, the geodetic latitude is that of the closest point to P on the spheroid. Latitude is measured in radians. On input, the range of latitude is unrestricted. alt is the altitude of point above the reference spheroid. `alt' must be in the same units as `re'. re is the equatorial radius of a reference spheroid. This spheroid is a volume of revolution: its horizontal cross sections are circular. The shape of the spheroid is defined by an equatorial radius `re' and a polar radius `rp'. `re' must be in the same units as `alt'. f is the flattening coefficient = (re-rp) / re, where `rp' is the polar radius of the spheroid. Detailed_Outputrectan are the rectangular coordinates of the input point. The units associated with `rectan' are those associated with the inputs `alt' and `re'. ParametersNone. Exceptions1) If the flattening coefficient is greater than or equal to one, the error SPICE(VALUEOUTOFRANGE) is signaled by a routine in the call tree of this routine. 2) If the equatorial radius is less than or equal to zero, the error SPICE(VALUEOUTOFRANGE) is signaled by a routine in the call tree of this routine. FilesNone. ParticularsGiven the geodetic coordinates of a point, and the constants describing the reference spheroid, this routine returns the bodyfixed rectangular coordinates of the point. The bodyfixed rectangular frame is that having the X-axis pass through the 0 degree latitude 0 degree longitude point. The Y-axis passes through the 0 degree latitude 90 degree longitude. The Z-axis passes through the 90 degree latitude point. For some bodies this coordinate system may not be a right-handed coordinate system. ExamplesThis routine can be used to convert body fixed geodetic coordinates (such as the used for United States Geological Survey topographic maps) to bodyfixed rectangular coordinates such as the Satellite Tracking and Data Network of 1973. 1) Find the rectangular coordinates of the point having Earth geodetic coordinates: lon (deg) = 118.0 lat (deg) = 32.0 alt (km) = 0.0 Use the PCK kernel below to load the required triaxial ellipsoidal shape model and orientation data for the Earth. pck00010.tpc Example code begins here. /. Program georec_ex1 ./ #include <stdio.h> #include "SpiceUsr.h" int main( ) { /. Local variables ./ SpiceDouble alt; SpiceDouble f; SpiceDouble lat; SpiceDouble lon; SpiceDouble radii [3]; SpiceDouble re; SpiceDouble rectan [3]; SpiceDouble rp; SpiceInt n; /. Load a PCK file containing a triaxial ellipsoidal shape model and orientation data for the Earth. ./ furnsh_c ( "pck00010.tpc" ); /. Retrieve the triaxial radii of the Earth ./ bodvrd_c ( "EARTH", "RADII", 3, &n, radii ); /. Compute flattening coefficient. ./ re = radii[0]; rp = radii[2]; f = ( re - rp ) / re; /. Set a geodetic position. ./ lon = 118.0 * rpd_c ( ); lat = 30.0 * rpd_c ( ); alt = 0.0; /. Do the conversion. ./ georec_c ( lon, lat, alt, radii[0], f, rectan ); printf( "Geodetic coordinates in deg and km (lon, lat, alt)\n" ); printf( " %13.6f %13.6f %13.6f\n", lon * dpr_c ( ), lat * dpr_c ( ), alt ); printf( "Rectangular coordinates in km (x, y, z)\n" ); printf( " %13.6f %13.6f %13.6f\n", rectan[0], rectan[1], rectan[2] ); return ( 0 ); } When this program was executed on a Mac/Intel/cc/64-bit platform, the output was: Geodetic coordinates in deg and km (lon, lat, alt) 118.000000 30.000000 0.000000 Rectangular coordinates in km (x, y, z) -2595.359123 4881.160589 3170.373523 2) Create a table showing a variety of rectangular coordinates and the corresponding Earth geodetic coordinates. The values are computed using the equatorial radius of the Clark 66 spheroid and the Clark 66 flattening factor: radius: 6378.2064 flattening factor: 1./294.9787 Note: the values shown above may not be current or suitable for your application. Corresponding rectangular and geodetic coordinates are listed to three decimal places. Input angles are in degrees. Example code begins here. /. Program georec_ex2 ./ #include <stdio.h> #include "SpiceUsr.h" int main( ) { /. Local parameters. ./ #define NREC 11 /. Local variables. ./ SpiceDouble clarkr; SpiceDouble clarkf; SpiceDouble rectan [3]; SpiceDouble rlat; SpiceDouble rlon; SpiceInt i; /. Define the input geodetic coordinates. Angles in degrees. ./ SpiceDouble lon [NREC] = { 0.0, 0.0, 90.0, 0.0, 180.0, -90.0, 0.0, 45.0, 0.0, 90.0, 45.0 }; SpiceDouble lat [NREC] = { 90.0, 0.0, 0.0, 90.0, 0.0, 0.0, -90.0, 0.0, 88.707, 88.707, 88.1713 }; SpiceDouble alt [NREC] = { -6356.5838, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -6355.5725, -6355.5725, -6355.5612 }; /. Using the equatorial radius of the Clark66 spheroid (clarkr = 6378.2064 km) and the Clark 66 flattening factor (clarkf = 1.0 / 294.9787 ) convert from body fixed rectangular coordinates. ./ clarkr = 6378.2064; clarkf = 1.0 / 294.9787; /. Print the banner. ./ printf( " lon lat alt rectan[0] rectan[1] " " rectan[2]\n" ); printf( " ------- ------- --------- --------- --------- " " ---------\n" ); /. Do the conversion. ./ for ( i = 0; i < NREC; i++ ) { rlon = lon[i] * rpd_c ( ); rlat = lat[i] * rpd_c ( ); georec_c ( rlon, rlat, alt[i], clarkr, clarkf, rectan ); printf( "%8.3f %8.3f %10.3f", lon[i], lat[i], alt[i] ); printf( "%11.3f %10.3f %10.3f\n", rectan[0], rectan[1], rectan[2] ); } return ( 0 ); } When this program was executed on a Mac/Intel/cc/64-bit platform, the output was: lon lat alt rectan[0] rectan[1] rectan[2] ------- ------- --------- --------- --------- --------- 0.000 90.000 -6356.584 0.000 0.000 0.000 0.000 0.000 0.000 6378.206 0.000 0.000 90.000 0.000 0.000 0.000 6378.206 0.000 0.000 90.000 0.000 0.000 0.000 6356.584 180.000 0.000 0.000 -6378.206 0.000 0.000 -90.000 0.000 0.000 0.000 -6378.206 0.000 0.000 -90.000 0.000 0.000 0.000 -6356.584 45.000 0.000 0.000 4510.073 4510.073 0.000 0.000 88.707 -6355.573 1.000 0.000 1.000 90.000 88.707 -6355.573 0.000 1.000 1.000 45.000 88.171 -6355.561 1.000 1.000 1.000 RestrictionsNone. Literature_References[1] R. Bate, D. Mueller, and J. White, "Fundamentals of Astrodynamics," Dover Publications Inc., 1971. Author_and_InstitutionC.H. Acton (JPL) N.J. Bachman (JPL) J. Diaz del Rio (ODC Space) H.A. Neilan (JPL) B.V. Semenov (JPL) W.L. Taber (JPL) E.D. Wright (JPL) Version-CSPICE Version 1.0.4, 01-NOV-2021 (JDR) Edited the header to comply with NAIF standard. Added two complete code examples. -CSPICE Version 1.0.3, 26-JUL-2016 (BVS) Minor headers edits. -CSPICE Version 1.0.2, 30-JUL-2003 (NJB) Various header corrections were made. -CSPICE Version 1.0.1, 11-JAN-2003 (EDW) Removed a spurious non-printing character. -CSPICE Version 1.0.0, 08-FEB-1998 (EDW) (CHA) (HAN) (WLT) Index_Entriesgeodetic to rectangular coordinates |
Fri Dec 31 18:41:07 2021