Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
dskcls_c

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version
Index_Entries

Procedure

   dskcls_c ( DSK, close file ) 

   void dskcls_c ( SpiceInt      handle,
                   SpiceBoolean  optmiz )

Abstract

   Close a DSK file.

Required_Reading

   DAS
   DSK

Keywords

   DAS
   DSK
   FILES
   TOPOGRAPHY


Brief_I/O

   VARIABLE  I/O  DESCRIPTION
   --------  ---  --------------------------------------------------
   handle     I   Handle assigned to the opened DSK file.
   optmiz     I   Flag indicating whether to segregate the DSK.

Detailed_Input

   handle      is the DAS file handle associated with the file.
               The file may be open for read or write access.

   optmiz      is a logical flag indicating whether the DSK
               should be segregated before it is closed. This
               option applies only to files open for write
               access. The value of `optmiz' has no effect for
               files opened for read access.

               See the DAS Required Reading das.req for a
               discussion of segregation of DAS files.

Detailed_Output

   None. This routine operates by side effects.

Parameters

   None.

Exceptions

   1)  If an error occurs when the file is closed, the error is
       signaled by a routine in the call tree of this routine.

Files

   See argument `handle'.

Particulars

   This routine provides a DSK-level interface for closing DSK files.

   In cases where DSKs opened for write access are to be closed
   without segregation, this interface is slightly simpler than that
   available at the DAS level.

Examples

   The numerical results shown for these examples may differ across
   platforms. The results depend on the SPICE kernels used as
   input, the compiler and supporting libraries, and the machine
   specific arithmetic implementation.

   1) Create a three-segment DSK file using plate model data for
      Phobos. Use latitudinal, rectangular, and planetodetic
      coordinates in the respective segments. This is not a
      realistic example, but it serves to demonstrate use of
      the supported coordinate systems.

      Use the DSK kernel below to provide, for simplicity, the
      input plate and vertex data. The selected input file has one
      segment.

         phobos_3_3.bds


      Example code begins here.


      /.
         Program dskcls_ex1

         Example program for dskw02_c, dskmi2_c, and dskrb2_c

         Create a three-segment DSK file using plate model data for
         Phobos. Use latitudinal, rectangular, and planetodetic
         coordinates in the respective segments.

         For simplicity, use an existing DSK file to provide the
         input plate and vertex data. The selected input file has one
         segment.

            Version 1.0.0 22-JAN-2016 (NJB)

      ./
      #include <stdio.h>
      #include "SpiceUsr.h"

      int main()
      {

         /.
         Local constants
         ./
         #define FILSIZ          256
         #define LNSIZE           81
         #define NCOR              4
         #define NSEG              3
         #define NAMLEN           21

         /.
         Local variables
         ./

         /.
         Below, we declare large arrays static to avoid stack
         overflow problems.
         ./

         SpiceBoolean            found;

         SpiceChar               cornam [ NCOR ][ NAMLEN ] =
                                 { "radius",
                                   "Z-coordinate",
                                   "Z-coordinate",
                                   "altitude" };

         SpiceChar             * dsk;
         SpiceChar             * frame;
         SpiceChar             * indsk;

         SpiceDLADescr           dladsc;

         SpiceDouble             corpar [ SPICE_DSK_NSYPAR ];
         SpiceDouble             f;
         SpiceDouble             finscl;
         SpiceDouble             first;
         SpiceDouble             last;
         SpiceDouble             mncor1;
         SpiceDouble             mncor2;
         SpiceDouble             mncor3;
         SpiceDouble             mxcor1;
         SpiceDouble             mxcor2;
         SpiceDouble             mxcor3;
         SpiceDouble             re;
         SpiceDouble             rp;

         /.
         Note: the values of SPICE_DSK02_MAXVRT and
         SPICE_DSK02_MAXPLT declared in SpiceDSK.h,
         integer spatial index dimension SPICE_DSK02_SPAISZ,
         and the workspace dimension SPICE_DSK02_MAXCEL
         are very large. Smaller buffers can be used for most
         applications.
         ./
         static SpiceDouble      spaixd [ SPICE_DSK02_SPADSZ ];
         static SpiceDouble      vrtces [ SPICE_DSK02_MAXVRT ][3];

         SpiceInt                center;
         SpiceInt                corscl;
         SpiceInt                corsys;
         SpiceInt                dclass;
         SpiceInt                handle;
         SpiceInt                i;
         SpiceInt                inhan;
         SpiceInt                np;
         SpiceInt                nv;
         static SpiceInt         plates [ SPICE_DSK02_MAXPLT ][3];
         SpiceInt                segno;
         static SpiceInt         spaixi [ SPICE_DSK02_SPAISZ ];
         SpiceInt                spaisz;
         SpiceInt                surfid;
         SpiceInt                voxpsz;
         SpiceInt                voxlsz;
         static SpiceInt         work   [ SPICE_DSK02_MAXCEL ][2];
         SpiceInt                worksz;


         /.
         Assign names of input and output DSK files.
         ./
         indsk = "phobos_3_3.bds";
         dsk   = "phobos_3_3_3seg.bds";

         /.
         Open input DSK for read access; find first segment.
         ./
         dasopr_c ( indsk, &inhan );
         dlabfs_c ( inhan, &dladsc, &found );

         /.
         Fetch vertices and plates from input DSK file.

         Note that vertex and plate indices are 1-based.
         ./
         printf ( "Reading input data...\n" );

         dskv02_c ( inhan, &dladsc, 1, SPICE_DSK02_MAXVRT,
                    &nv,   vrtces                           );
         dskp02_c ( inhan, &dladsc, 1, SPICE_DSK02_MAXPLT,
                    &np,   plates                           );

         printf ( "Done.\n" );


         /.
         Set input array sizes required by dskmi2_c.
         ./
         voxpsz = SPICE_DSK02_MAXVXP;
         voxlsz = SPICE_DSK02_MXNVLS;
         worksz = SPICE_DSK02_MAXCEL;
         spaisz = SPICE_DSK02_SPAISZ;

         /.
         Set fine and coarse voxel scales. (These usually
         need to determined by experimentation.)
         ./
         finscl = 5.0;
         corscl = 4;

         /.
         Open a new DSK file.
         ./
         dskopn_c ( dsk, dsk, 0, &handle );

         /.
         Create three segments and add them to the file.
         ./
         for ( segno = 1;  segno <= NSEG;  segno++ )
         {
            /.
            Create spatial index. We won't generate a
            vertex-plate mapping, so we set the flag
            for creating this map to "false."
            ./
            printf ( "Creating segment %d\n", (int)segno );
            printf ( "Creating spatial index...\n" );

            dskmi2_c ( nv,     vrtces,     np,     plates,
                       finscl, corscl,     worksz, voxpsz,
                       voxlsz, SPICEFALSE, spaisz, work,
                       spaixd, spaixi                    );

            printf ( "Done.\n" );

            /.
            Set up inputs describing segment attributes:

            - Central body: Phobos
            - Surface ID code: user's choice.
              We use the segment number here.
            - Data class: general (arbitrary) shape
            - Body-fixed reference frame
            - Time coverage bounds (TBD)
            ./
            center = 401;
            surfid = segno;
            dclass = SPICE_DSK_GENCLS;
            frame  = "IAU_PHOBOS";

            first = -50 * jyear_c();
            last  =  50 * jyear_c();

            /.
            Set the coordinate system and coordinate system
            bounds based on the segment index.

            Zero out the coordinate parameters to start.
            ./
            for ( i = 0;  i < SPICE_DSK_NSYPAR;  i++ )
            {
               corpar[i] = 0.0;
            }

            if ( segno == 1 )
            {
               /.
               Use planetocentric latitudinal coordinates. Set
               the longitude and latitude bounds.
               ./
               corsys = SPICE_DSK_LATSYS;

               mncor1 = -pi_c();
               mxcor1 =  pi_c();
               mncor2 = -pi_c()/2;
               mxcor2 =  pi_c()/2;
            }
            else if ( segno == 2 )
            {

               /.
               Use rectangular coordinates. Set the
               X and Y bounds.

               The bounds shown here were derived from
               the plate data. They lie slightly outside
               of the range spanned by the plates.
               ./
               corsys = SPICE_DSK_RECSYS;

               mncor1 = -1.3;
               mxcor1 =  1.31;
               mncor2 = -1.21;
               mxcor2 =  1.2;
            }
            else
            {
               /.
               Set the coordinate system to planetodetic.
               ./
               corsys    = SPICE_DSK_PDTSYS;

               mncor1    = -pi_c();
               mxcor1    =  pi_c();
               mncor2    = -pi_c()/2;
               mxcor2    =  pi_c()/2;

               /.
               We'll use equatorial and polar radii from
               pck00010.tpc. These normally would be fetched
               at run time, but for simplicity, we'll use
               hard-coded values.
               ./
               re        = 13.0;
               rp        =  9.1;
               f         = ( re - rp ) / re;

               corpar[0] = re;
               corpar[1] = f;
            }
            /.
            Compute plate model radius bounds.
            ./
            printf ( "Computing %s bounds of plate set...\n",
                     cornam[corsys-1]                        );

            dskrb2_c ( nv,     vrtces, np,      plates,
                       corsys, corpar, &mncor3, &mxcor3 );

            printf ( "Done.\n" );

            /.
            Write the segment to the file.
            ./
            printf ( "Writing segment...\n" );

            dskw02_c ( handle,
                       center, surfid, dclass, frame,  corsys,
                       corpar, mncor1, mxcor1, mncor2, mxcor2,
                       mncor3, mxcor3, first,  last,   nv,
                       vrtces, np,     plates, spaixd, spaixi );

            printf ( "Done.\n" );
         }

         /.
         Segregate the data records in the DSK file and
         close the file.
         ./
         printf ( "Segregating and closing DSK file...\n" );

         dskcls_c ( handle, SPICETRUE );

         printf ( "Done.\n" );

         return ( 0 );
      }


      When this program was executed on a Mac/Intel/cc/64-bit
      platform, the output was:


      Reading input data...
      Done.
      Creating segment 1
      Creating spatial index...
      Done.
      Computing radius bounds of plate set...
      Done.
      Writing segment...
      Done.
      Creating segment 2
      Creating spatial index...
      Done.
      Computing Z-coordinate bounds of plate set...
      Done.
      Writing segment...
      Done.
      Creating segment 3
      Creating spatial index...
      Done.
      Computing altitude bounds of plate set...
      Done.
      Writing segment...
      Done.
      Segregating and closing DSK file...
      Done.


      Note that after run completion, a new DSK exists in the output
      directory.

   2) Close a new DSK file using DAS segregation. `handle'
      is the DAS file handle of the DSK.

      This is the normal choice for DSK creation.

         dskcls_c ( HANDLE, SPICETRUE )

   3) Close a new DSK file without using DAS segregation. The
      close operation will be fast, but reading the file will be
      less efficient than if the file had been segregated.

         dskcls_c ( HANDLE, SPICEFALSE )

   4) Close an existing DSK file that had been opened
      for read access. In this case `optmiz' is ignored:

         dskcls_c ( HANDLE, SPICEFALSE )

      or

         dskcls_c ( HANDLE, SPICETRUE )

Restrictions

   1)  This routine should not be called by user applications
       that have loaded a DSK file via furnsh_c. Such applications
       should call the functions unload_c or kclear_c instead.

Literature_References

   None.

Author_and_Institution

   N.J. Bachman        (JPL)
   J. Diaz del Rio     (ODC Space)

Version

   -CSPICE Version 1.0.1, 06-JUL-2021 (JDR)

       Edited the header to comply with NAIF standard. Added
       complete code example based on example in dskmi2_c.

   -CSPICE Version 1.0.0, 23-JAN-2016 (NJB)

Index_Entries

   close a DSK file
Fri Dec 31 18:41:04 2021