
Navigation and Ancillary Information Facility

N IF

Introduction to Kernels

January 2020

Navigation and Ancillary Information Facility

N IF Agenda

• Overview
• Kernel architecture
• Producing kernels
• Using kernels

Introduction to Kernels 2

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 3

What is a SPICE “Kernel”

“Kernel” means file
“Kernel” means a file containing ancillary data

“Kernel” means a file containing "low level" ancillary data that may be used,
along with other data and SPICE Toolkit software, to determine higher level

observation geometry parameters of use to scientists and engineers in planning
and carrying out space missions, and analyzing data returned from missions.

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 4

The Family of SPICE Kernels

• SPK
– Spacecraft and Planet Ephemeris

• PCK
– Planetary Constants, for natural bodies

» Orientation
» Size and shape

• IK
– Instrument

• CK
– Orientation (“Camera-matrix”)

• EK
– Events, up to three distinct components

» ESP: science plan
» ESQ: sequence
» ENB: experimenter’s notebook

• FK
– Reference frame specifications

• SCLK
– Spacecraft clock correlation data

• LSK
– Leapseconds

• MK
– Meta-Kernel (a.k.a. “FURNSH kernel”)
– Mechanism for aggregating and easily

loading a collection of kernel files

• DSK
– Digital shape kernel

» Tesselated plate model
» Digital elevation model (under

development)
• DBK

– Database mechanism
» Primarily used to support the ESQEK is rarely used

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 5

• Binary form
– Files containing mostly data encoded in binary form

» They also contain a small amount of ASCII text
– Provide rapid access to large amounts of numeric data
– Require the use of SPICE Toolkit software to produce them
– Require the use of SPICE Toolkit software to utilize their contents

• Text form
– Files containing only printing characters (ASCII values 32-126), i.e.

human-readable text.
– Produced using a text editor
– Require the use of SPICE Toolkit software to utilize their contents

• “Transfer” form of a binary kernel
– An ASCII representation of a binary kernel
– Was used for porting the file between computers with incompatible

binary representations (e.g. PC and UNIX); no longer needed
» But it is one way to convert a non-native binary kernel into native

format, needed for modifying the kernel or improving read efficiency

SPICE Kernel Forms

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 6

Text and Binary Kernels

SPICE text kernels are:
– text PCK (the most common

type of PCK)
– IK
– FK
– LSK
– SCLK
– MK

SPICE binary kernels are:
– SPK
– binary PCK (has been used only

for Earth, Moon and Eros)
– CK
– DSK

– ESQ (part of the E-kernel)
– DBK (database kernel)

Rarely
used

Navigation and Ancillary Information Facility

N IF

Kernel Architecture

- Text kernels
- Binary kernels
- Comments in kernels

Introduction to Kernels 7

Navigation and Ancillary Information Facility

N IF Text Kernel Contents

• A text kernel is a plain text file of ASCII data

• It contains assignments of the form:

variable_name = value(s)

• A text kernel should also contain descriptive
comments that describe the assignments

– Comments are sometimes referred to as “meta-data”
» Don’t confuse this usage with the “meta-kernel” described

later in this tutorial

Introduction to Kernels 8

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 9

KPL/<kernel type>
<some comments about the data >

\begindata

NAME = 'Sample text value'
NaMe = 'Keywords are case sensitive'

NUMBERS = (10.123, +151.241, -1D14)
NUMBERS += (1.0, 1, -10)
NUMBERS += (1.542E-12, 1.123125412)

START = @2011-JAN-1

\begintext

< some comments about the data >

\begindata

< more data in keyword = value syntax >

\begintext
< etc., etc. >

• The next several pages describe what you see above
• See the “Kernel Required Reading” document for details

Example Text Kernel

A data block

Another data block

A “comments” block

Another “comments” block

An initial “comments” block
(Doesn't need a \begintext marker)

Navigation and Ancillary Information Facility

N IF Text Kernel Formatting

• KPL/<text kernel type>
- Its use is optional, but is highly recommended
- Must appear on the first line, starting in column 1
- Tells SPICE software what kind of kernel it is
- Text kernel types are FK, IK, PCK, SCLK, MK

• \begindata and \begintext
- Markers, on lines by themselves, which set off the beginning of

data and the beginning of comment (metadata) blocks respectively
- They need not begin in column 1
- An initial set of comments need not be preceded by a \begintext marker

• <LF> for Unix/Linux/Mac or <CR><LF> for Windows
- End of line marker (usually not visible when displaying a text kernel)
- Must be present on EVERY line in the text kernel

• Max line length, including any white space is 132 characters
Introduction to Kernels 10

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 11

Text Kernel Operators

• An assignment using the “=” operator associates one or
more values with a variable name.

• An assignment using the “+=” operator associates additional
values with an existing variable name.

• An assignment using the “@” symbol associates a calendar
date with a variable name.

– The string will be parsed and converted to an internal double precision
representation of that epoch as seconds past the J2000 epoch

» There is no time system implied
» This conversion does not need a leap seconds kernel

Navigation and Ancillary Information Facility

N IF Variable Names and Values

• Variable names
– Max of 32 characters
– Are case sensitive (recommendation: use only upper case)
– Cannot include space, period, parenthesis, equals sign or tab
– Recommendation: don’t use the “+” sign as the last character

• Values
– Numeric: integer, fixed point and scientific notation are allowed
– String:

» enclosed in single quotes
» maximum length of 80 characters on a given line

• SPICE has means to concatenate multiple string values to allow for values exceeding 80
characters

» string values may contain any printing ASCII character, including blank
– Time: identified by the “@” character
– Any of these three types can be provided as an n-dimensional vector of values

» Components are separated by commas or white space (but not TABs)
» Parentheses are used to enclose the vector
» Each string value in a vector is contained in single quotes
» Values in a vector must all be of the same type (numeric, string or time)

• See “Kernel Required Reading” for more information
Introduction to Kernels 12

Navigation and Ancillary Information Facility

N IF Variable Names and Values

• A “picture” of the most basic text kernel assignment rules

Introduction to Kernels 13

MY_NIFTY_TEXT_VARIABLE = 'Text, numbers or dates containing no more than 80 characters’ <EOL>

32 max characters 80 max characters, not including the single quotes at each end

132 max characters, with the non-printing system-dependent end-of-line indicator at the end*

*Unix, Linux, OSX EOL symbol: <LF>
*DOS/Windows EOL symbol: <CR><LF>

Any printing characters except
white space, comma, parenthesis,
equals sign, or TAB. Don't end a
name with a plus sign. NAIF
strongly recommends you use
only upper case characters.

A text string, consisting of
any printing characters

Single quoteSingle quote

(6378.12 6332.34 6355.8)
(6378.12, 6332.34, 6355.8)

-12.236E5

@31-JAN-2012

Two forms for vectors

Scientific notation

Dates (special handling ensues)

Character string

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 14

Example Binary Kernel

A binary kernel contains lots
of non-printing data.

Includes a “comment area”
where descriptive meta-data
provided as ASCII text
should be placed.

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 15

Comments In SPICE Kernels

• All SPICE kernels should contain comments–
descriptive information about the data contained
in the file.

– “Comments” are also known as “meta-data”

• See the tutorial on comments for more
information.

Navigation and Ancillary Information Facility

N IF

Producing Kernels

Introduction to Kernels 16

Navigation and Ancillary Information Facility

N IF Making a Text Kernel

• Text kernels may be produced using a text editor
– Text kernels must contain only printing characters (ASCII values 32-

126), i.e. human-readable text
» TAB characters are allowed but HIGHLY DISCOURAGED
» Caution: some text editors insert non-printing characters

– Text kernels must have each line terminated with the end-of-line
indicator appropriate for the operating system you are using

» For Unix, PC/Linux, Mac OSX: <LF>
» For PC/Windows: <CR><LF>
» Don’t forget to insert the end-of-line indicator on the very last line

of the kernel!
– Fortran toolkit software will detect and warn you if trying to read a

non-native text kernel. (Not needed for other languages.)
» Caution: this warning doesn’t work for a file smaller than 132

bytes
– See the BACKUP for information on converting text kernels between

these two line termination techniques
Introduction to Kernels 17

Navigation and Ancillary Information Facility

N IF Making a Binary Kernel

• Binary kernels are made using Toolkit utility
programs, or by using Toolkit APIs built into your
own application program

• See “How Kernels are Made and Used” in the
BACKUP section for a bit more information

• See the “Making an SPK” and “Making a CK”
tutorials

Introduction to Kernels 18

Navigation and Ancillary Information Facility

N IF

Using Kernels

Introduction to Kernels 19

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 20

• To make kernels available to a program you “load” them

• When you load a text kernel:
– the file is opened
– the kernel contents are read into memory

» variable names and associated values are stored in a data structure
called the “kernel pool”

– the file is closed

• When you load a binary kernel:
– the file is opened
– for SPK, CK, binary PCK and DSK files, no data are read until a read request

is made by Toolkit software
– for ESQ files, the schema description is read, checked, and stored in memory

at load time, but no data are read until a query/fetch is made
– for all practical purposes the binary file remains open unless specifically

unloaded by you

Loading Kernels - 1

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 21

• Use the FURNSH routine to load all kernels – text and binary
– CALL FURNSH ('name.ext') (Fortran)
– furnsh_c (″name.ext″); (C)
– cspice_furnsh, 'name.ext' (IDL)
– cspice_furnsh ('name.ext') (MATLAB)
– spiceypy.furnsh ('name.ext') (Python using SpiceyPy)

• Best practice: don’t hard code filenames as shown above–
instead, list them in a “meta-kernel” and load the meta-
kernel using FURNSH
– CALL FURNSH ('meta-kernel_name’) (Fortran example)
– Look further down for more information on meta-kernels

• Caution: “Transfer format” versions of binary kernels can
not be loaded; they must first be converted to binary with
the Toolkit utility program tobin or spacit

Loading Kernels - 2

Navigation and Ancillary Information Facility

N IF Run-time Translation

• Binary kernels, whether or not in native binary
format, may be read by any of the toolkits

– Accomplished by run-time translation built into Toolkit code
– Run-time translation does NOT apply to writing to an existing

binary kernel

• Text kernels may be read by any of the C, IDL and
Matlab Toolkits no matter if the end-of-line
terminator is Windows style (<CR><LF>) or
OSX/Linux style (<LF>)

– Accomplished by run-time translation built into Toolkit code
– Run-time translation does NOT work for Fortran Toolkits: these

Toolkits read text kernels only in native format

Introduction to Kernels 22

Navigation and Ancillary Information Facility

N IF

Meta-Kernels

These help make kernel management easy!

Introduction to Kernels 23

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 24

What is a “Meta-Kernel”

• A meta-kernel is a file that lists names (and locations) of a
collection of SPICE kernels that are to be used together in a
SPICE-based application

– Loading the meta-kernel causes all of the kernels listed in it to be
loaded

• Using a meta-kernel makes it easy to manage which SPICE
files are loaded into your program. You don’t need to revise
your code–just edit your meta-kernel

• A meta-kernel is implemented using the SPICE text kernel
standards

– Refer to the Kernel Required Reading technical reference for details

• The terms “meta-kernel” and “FURNSH kernel” are used
synonymously

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 25

KPL/MK
\begindata

KERNELS_TO_LOAD = (
'/home/mydir/kernels/lowest_priority.bsp',
'/home/mydir/kernels/next_priority.bsp',
'/home/mydir/kernels/highest_priority.bsp',
'/home/mydir/kernels/leapseconds.tls',
'/home/mydir/kernels/sclk.tsc',
'/home/mydir/kernels/c-kernel.bc',
'/home/mydir/kernels+’,
'/custom/kernel_data/p_constants.tpc’,

)

Sample Meta-Kernel

All the commas
are optional

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 26

KPL/MK
\begindata

KERNELS_TO_LOAD = (
'/home/mydir/kernels/lowest_priority.bsp',
'/home/mydir/kernels/next_priority.bsp',
'/home/mydir/kernels/highest_priority.bsp',
'/home/mydir/kernels/leapseconds.tls',
'/home/mydir/kernels/sclk.tsc',
'/home/mydir/kernels/c-kernel.bc',
'/home/mydir/kernels+’,
'/custom/kernel_data/p_constants.tpc’,

)

• The last file listed in this example (p_constants.tpc) demonstrates how
to use the continuation character, ‘+’, to work around the 80 character
limitation imposed on string lengths by the text kernel standards.

• See the next two pages for some important OS-specific details!

Sample Meta-Kernel

All the commas
are optional

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 27

• This meta-kernel uses the PATH_VALUES and PATH_SYMBOLS
keywords to specify the directory where the kernels are located.

KPL/MK
\begindata

PATH_VALUES = ('/home/mydir/kernels')
PATH_SYMBOLS = ('KERNELS')
KERNELS_TO_LOAD = (

'$KERNELS/lowest_priority.bsp',
'$KERNELS/next_priority.bsp',
'$KERNELS/highest_priority.bsp',
'$KERNELS/leapseconds.tls',
'$KERNELS/sclk.tsc',
'$KERNELS/c-kernel.bc',
'$KERNELS/custom/kernel_data/p_constants.tpc'

)
• Although the OS environment variable notation $<name> is used to refer to the
symbols specified using the PATH_VALUES and PATH_SYMBOLS keywords,
these symbols are NOT operating system environment variables and are set and
used for substitution by SPICE only in the context of this particular meta-kernel.
• The ‘+’ continuation character described on the previous page may be used to
handle path strings that exceed 80 characters.

Unix/Mac
Sample Meta-Kernel

UNIX/MAC style path
notation, using
forward slashes

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 28

• This meta-kernel uses the PATH_VALUES and PATH_SYMBOLS
keywords to specify the directory where the kernels are located.

KPL/MK
\begindata

PATH_VALUES = (‘c:\home\mydir\kernels')
PATH_SYMBOLS = ('KERNELS')
KERNELS_TO_LOAD = (

'$KERNELS\lowest_priority.bsp',
'$KERNELS\next_priority.bsp',
'$KERNELS\highest_priority.bsp',
'$KERNELS\leapseconds.tls',
'$KERNELS\sclk.tsc',
'$KERNELS\c-kernel.bc',
'$KERNELS\custom\kernel_data\p_constants.tpc'

)
• Although the OS environment variable notation $<name> is used to refer to the
symbols specified using the PATH_VALUES and PATH_SYMBOLS keywords,
these symbols are NOT operating system environment variables and are set and
used for substitution by SPICE only in the context of this particular meta-kernel.
• The ‘+’ continuation character described on the previous page may be used to
handle path strings that exceed 80 characters.

Windows
Sample Meta-Kernel

Windows style path
notation, using
backwards slashes

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 29

• The number of all types of kernels that may be
loaded at any time is large, but limited.

– As of the version N66 Toolkits it is limited to 5,300
» Assumes each kernel has been loaded only once, and not

unloaded.
• As of the version N66 Toolkits the number of binary

kernels that may be loaded at the same time is
limited to 5000

– Binary kernel types are: SPK, binary PCK, CK and DSK
» Also the rarely used ESQ

• There are also limits on the number of keywords
and values for all loaded text kernels:

– Maximum number of keywords is 26,003
– Maximum number of numeric data items is 400,000
– Maximum number of character data items is 15,000

Limits on Loaded Kernels (N66)

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 30

• The order in which SPICE kernels are loaded at run-time
determines their priority when requests for data are made

– For binary kernels, data from a higher priority file will be used in the
case when two or more files contain data overlapping in time for a given
object.

» For SPKs, CKs, and binary PCKs the file loaded last takes
precedence (has higher priority).
»For DSKs, use of priority will be specified via API calls

» Not yet supported as of N66 Toolkits
» Priority doesn’t apply to ESQ files – all data from all loaded files
are available.

– If two (or more) text kernels assign value(s) to a single keyword using
the “=” operator, the data value(s) associated with the last loaded
occurrence of the keyword are used–all earlier values are replaced with
the last loaded value(s).
– Orientation data from a binary PCK always supersedes orientation data
(for the same object) obtained from a text PCK, no matter the order in
which the kernels are loaded.

Kernel Precedence Rule

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 31

• The unloading of a kernel is infrequently needed for
FORTRAN or CSPICE applications but is essential for Icy,
Mice, Python and similar interpreter scripts.

– Because of the way IDL and MATLAB interact with external shared
object libraries, any kernels loaded during an IDL or MATLAB session
will stay loaded until the end of the session unless they are specifically
unloaded.

• The routines KCLEAR and UNLOAD may be used to unload
kernels containing data you wish to be no longer available
to your program.

– KCLEAR unloads all kernels and clears the kernel pool
– UNLOAD unloads specified kernels
– KCLEAR and UNLOAD are only capable of unloading kernels that have

been loaded with the routine FURNSH. They will not unload any files
that have been loaded with older load routines such as SPKLEF (those
used prior to availability of FURNSH).

• Caution: unloading text kernels with UNLOAD will also
remove any kernel pool data provided through the kernel
pool run-time data insertion/update APIs (PCPOOL,
PDPOOL, PIPOOL).

Unloading Kernels

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 32

Backup

• How kernels are made and used

• Why and how kernels are modified

• SPICE data structures hierarchy

• Problems making text kernels

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 33

SPK

PCK

IK

CK

FK

ESP

ESQ

ENB

LSK

SCLK

Meta-kernel
(FURNSH)

How Kernels are Made and Used at JPL

NAV and NAIF

NAIF

NAIF or other

SBP* SBP*

SBP*

SBP*

SBP*

SBP*

Text editor
for text versions

SBP*
for binary versions

Text editor

Text editor

SBP*

SBP*

SBP*

Text editor

Text editor

Browser or
e-mail

Text editor or
existing file, input
via ESQ or ENB

Web browser or
SBP*, depending
on implementation

SBP*

SBP*

SBP*

SBP*

SBP*

How Made? How Made?How Used? How Used?

Who usually makes the kernels at JPL?
This represents current practice for
most JPL missions, but is by no means a
requirement. Anyone can make SPICE files.

*SBP = SPICE-based program that uses modules from the
SPICE Toolkit. In some cases the Toolkit contains such a
program already built. In some cases NAIF may have such a
ready-built program that is not in the SPICE Toolkit.

The EK family
1

2

2

2

2

2

2

1

2

3

3

3

3

3DSK SBP*SBP*

2

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 34

SPK

PCK
Text version

IK

CK

FK

Why & How Kernels are “Modified” - 1

File Type Why Modified How Modified
-To add comments - COMMNT, SPACIT or SPICELIB module
-To merge files or subset a file - SPKMERGE, DAFCAT
-To correct/revise an object ID - BSPIDMOD

-To revise data values - Text editor
-To add additional data items and values - Text editor

-To revise data values - Text editor
-To add additional data items and values - Text editor

-To add comments - COMMNT, SPACIT, or SPICELIB module
-To merge files - DAFCAT, CKSMRG
-To revise the interpolation interval - CKSPANIT, CKSMRG
-To subset a file - CKSLICER

-To revise data values - Text editor
-To add additional data items and values - Text editor

DSK -To add comments - COMMNT, SPACIT or SPICELIB module
-To merge files - DLACAT

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 35

ESP

ESQ

ENB

LSK

SCLK

Meta-kernel
(FURNSH)

Why & How Kernels are “Modified” - 2

Why Modified How Modified
The EK family

File Type

-To add, revise or delete “data” - (Depends on implementation)
-To add comments - (Depends on implementation)

-To add additional data - Toolkit modules
-To revise data - Toolkit modules
-To delete data - Toolkit modules
-To add comments - COMMNT, SPACIT or SPICELIB module
-To merge files - (under development)

-To change entry status (public <--> private) - WWW
-To delete an entry - WWW

- To add a new leapsecond - Text editor

- To add comments - Text editor

- To add or remove kernels to be used - Text editor
in a program

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 36

SPICE Data Structures Hierarchy

ORAND

SPK CK
OR

PCK IK FK LSKSCLK ENB ESP ESQ

DBK

MIME
including
plain text DASTEXTDAF

EK Family

Binary BinaryText

DAF = Double Precision Array File DSK = Digital Shape Kernel (under development)
DBK = Data Base Kernel DLA = DAS Linked Array (under development)
DAS = Direct Access, Segregated
Excepting MIME, each of these data structures is built entirely of SPICE components.
PCK files are usually text-based, but binary versions exist for the earth and moon. The ESP has been
implemented using both the ENB and ESQ mechanisms. The DBK is a SQL-like, homebrew database.

Low
Level

Mid
Level

High
Level

Meta-kernel
(FURNSH) DSK

DLA

Navigation and Ancillary Information Facility

N IF Problems Making Text Kernels

• Cutting/pasting complete, or pieces of, data
assignments or \begindata or \begintext
markers into a text kernel can cause a problem

– It may result in insertion of non-printing characters or incorrect
end-of-line terminators

– This is not a problem for comments, but it is probably best to
treat all portions of a text kernel the same

• If creating a text kernel by editing an existing one:
– first save a backup copy
– be sure you are starting with a file in native format for the

computer you are using: either Unix/Linux/Mac or Windows
– use single quotes around any string (character) values
– be sure to insert a final end-of-line marker at the end of your

last line of data or text
» Press the “return” key to accomplish this

Introduction to Kernels 37

Navigation and Ancillary Information Facility

N IF Some Useful Tools - 1

• For a Unix or Linux (including Mac) environment
– In order to display all non-printing characters, display tab characters

as “^l”, and place a “$” character at the end of each line:
» cat -et <file name>

– How do end-of-line markers appear when displayed in a text file
using the cat -et command?

» Unix/Linux/Mac: $ (line feed)
» Windows: ^M$ (carriage return followed by line feed)

– In order to display the file type, language used, and end of line
marker

» file <file name>

» Examples using Unix and Windows (“PC”) versions of the SPICE
leapseconds kernel:

• file naif0010.tls

naif0010.tls: ASCII English text
• file naif0010.tls.pc

naif0010.tls.pc: ASCII English text, with CRLF line terminators

Introduction to Kernels 38

Navigation and Ancillary Information Facility

N IF Some Useful Tools - 2

• For a Unix or Linux (including Mac) environment
– To convert a Unix/Linux/Mac text kernel to Windows (“DOS”)

style:
» unix2dos <filename>

– To convert a Windows (“DOS”) style text kernel to Unix/Linux/Mac
style:

» dos2unix <filename>
– Unix2dos and dos2unix are often available on Unix-based computers,

and may be easily obtained from the www
– Alternatively, to convert either style text kernel to the other style, use

the SPICE “bingo” program
» The bingo program and User Guide are available only from the

NAIF/Toolkit/Utilities web page:
• http://naif.jpl.nasa.gov/naif/utilities.html

• More information
In Wikipedia, search on “newline” or “unix2dos”

Introduction to Kernels 39

