
Navigation and Ancillary Information Facility

N IF

Making an SPK File

January 2020



Navigation and Ancillary Information Facility

N IF

Making an SPK File 2

Table of Contents

• Purpose
• Scope
• Assumptions about user’s knowledge 
• SPK overview
• Summary of SPK architecture
• Discussion applicable to all production methods

– Recommended SPK types
• Selecting the polynomial degree (for polynomial SPK types)
• SPK production methods

– Using the “Make SPK” (MKSPK) program
– Using SPICELIB, CSPICE or IDL writer modules (APIs)

• Finishing up, applicable to all methods
– Adding comments
– Validation
– Merging

• Special requirements for making SPKs to be used in DSN/SPS 
software for view period generation, scheduling, metric predicts 
generation, and related functions.

– Applies only to those entities not making JPL NAV-style “p-files”
• Issues affecting performance (reading efficiency) and usability



Navigation and Ancillary Information Facility

N IF

Making an SPK File 3

Purpose

• This tutorial provides guidance for writing an 
SPK file using software provided by NAIF:
– the MKSPK application program
or
– SPK writer modules from SPICELIB (FORTRAN), CSPICE (C-

language), Icy (IDL) or Mice (MATLAB) toolkit
» Only partial implementation in Icy
» Only Type 8 writer implemented in Mice



Navigation and Ancillary Information Facility

N IF

Making an SPK File 4

Scope

• This tutorial addresses production of SPKs:
– for general purposes 
– for use with NASA’s Deep Space Network (DSN)

• This tutorial does not address production of SPKs:
– by JPL navigation teams using the NIOSPK utility

» Those NAV teams may simply learn how to use the NIOSPK program 
and any useful SPK-related utilities.

– by ESA/ESAC for its missions that use SPICE
» Those use custom “MEX2KER” software that was provided by NAIF

– having TCB time tags, in support of certain IAU needs
» These are SPK Types 101, 102, etc. 

– use of the OEM2SPK utility, used to process CCSDS* Orbit 
Ephemeris Message files

» See the OEM2SPK User’s Guide for this information

*CCSDS = Consultative Committee for Space Data Systems



Navigation and Ancillary Information Facility

N IF

Making an SPK File 5

Background Assumptions

• It is assumed the reader has some familiarity with the SPICE 
system, and with basic ideas of orbital mechanics.

– The SPICE Overview tutorial is available at:
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/0
3_spice_overview.pdf

• It is assumed the reader has read the “SPK Tutorial” that 
characterizes much of the SPK subsystem, with emphasis on 
reading SPK files.

– The SPK “reading” tutorial is available at:
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/18_spk.pdf

• It is assumed the reader has available the SPK reference 
document entitled “SPK Required Reading,” supplied with 
each copy of the SPICE Toolkit  (.../doc/spk.req) 

– SPK Required Reading is also available at:
https://naif.jpl.nasa.gov/naif/documentation.html



Navigation and Ancillary Information Facility

N IF

Making an SPK File 6

SPK References

• References for SPK production
– “Making an SPK” tutorial (this document)
– “SPK (Ephemeris System)” tutorial (focused on reading an SPK)
– “SPK Required Reading” technical reference (spk.req)
– “MKSPK Users Guide” (mkspk.ug)
– The source code “headers” provided as part of the SPK writer 

modules (subroutines)
– “SPKMERGE User’s Guide” (spkmerge.ug)
– “SPY User’s Guide” (spy.ug)



Navigation and Ancillary Information Facility

N IF Brief Overview - 1

• You should understand the physics of your data 
and how that relates to SPK type. For instance:
– Type 5 works best for an orbit well approximated by a sequence 

of one or more conic orbits.
– Types 9 and 13 fit data regardless of the expected physics.
• Caution: a good fit in the mathematical realm may not respect 

the physics of the trajectory. For example, fitting polynomials 
to an excessively sparse set of states for a planetary orbiter 
could result in an interpolated path that intersects the planet.

Making an SPK File 7



Navigation and Ancillary Information Facility

N IF Brief Overview - 2

• Ordinarily, use the NAIF MKSPK application to 
create SPKs from Cartesian state data or conic 
elements.
– Depending on your source data, SPK types 5, 9, 10, and 13 will 

satisfy the requirements for most users.
» Type 5, yields compact SPK files when the trajectory is well 

approximated by piecewise two-body motion.  Type 5 may 
be the best choice for planetary or solar orbiters when 
available state data are sparse.

» Type 9, a good, general choice
» Type 13, when you have very accurate velocity data
» Type 10 applies ONLY to Two Line Element Sets (TLEs).

• Alternatively, use the Toolkit’s SPK writing 
subroutines in your own production program.

• Caution: an SPK made for use by the NASA DSN 
has additional requirements, discussed later on.

Making an SPK File 8



Navigation and Ancillary Information Facility

N IF

Making an SPK File 9

Summary of SPK Architecture



Navigation and Ancillary Information Facility

N IF

Making an SPK File 10

SPK File Structure:  The User's View

Comment area

Segment 1

…
Segment n

Always present

Possibly present
- sometimes by your choice
- sometimes required

Logical Organization of an SPK File



Navigation and Ancillary Information Facility

N IF

Making an SPK File 11

SPK File Structure - 1

File record:  One record.

Comment area text Comment area: Present only if used. If 
used, one or more records.

Descriptor record: Contains 1 to 25 
segment descriptors. One record.

D1 U

U

Segment 1

N/P/C

I1

Records are fixed-length: 1024 bytes

U*

A minimal SPK file, containing only one segment

ID WORD IFNAMEND NI FWD BWD FREE BFF FTP0 PAD 0 PAD

Segment ID record: Contains 1 to 25 
segment IDs. One record.

Data segment: One or more records.

ID WORD: Indicates file architecture and type

ND, NI: Number of d.p. and integer descriptor components

IFNAME:  Internal file name

FWD, BWD: Forward and backward linked list pointers

FREE:  First free DAF address

BFF:  Binary file format ID

FTP:  FTP corruption test string

N/P/C:  Next, previous record pointers and descriptor count

Dn: Descriptor for segment n

In: Segment ID for segment n

U:  Unused space

U*: Possibly unused space



Navigation and Ancillary Information Facility

N IF

Making an SPK File 12

SPK File Structure - 2

File record:  One record

Comment area text

D27

Comment area: Present only if used.

Descriptor record: Contains 1 to 25 
segment descriptors. One record.

D1 D2 …
I2 …

Segment 1
Segment 2

N/P/C

I1 U

Segment 26

Segment 27

N/P/C

UI27

D26

I26

Records are fixed-length: 1024 bytes

U*Segment 25

D25

I25

U*

…

An SPK file containing multiple segments–in this example, 27

U*

…

ID WORD IFNAMEND NI FWD BWD FREE BFF FTP0 PAD 0 PAD

Diagram not to scale

. .
 .

. .
 .

Segment ID record: Contains 1 to 25 
segment IDs. One or more records.

Data segments: One or more records per 
segment. (Up to 25 segments.)

Descriptor record: Contains 1 to 25 
segment descriptors. One record.
Segment ID record: Contains 1 to 25 
segment IDs. One or more records.

Data segments: One or more records per 
segment. (Up to 25 segments.)

U



Navigation and Ancillary Information Facility

N IF

Making an SPK File 13

SPK File Structure - Description

• File record
– Contents 

» Internal file name (set by file creator)
» Architecture and binary file format identifiers
» File structure parameters
» FTP transmission corruption detection string

– Used by SPK reader and writer subroutines
• Comment Area

– A place where “metadata” (data about data) may be placed to help a 
user of the SPK file understand the circumstances of its production and 
any recommendations about for what uses it was intended

• Descriptor record and Segment ID record
– One of each of these is needed for every collection of 1-to-25 segments

• Segment[s]
– Collection[s] of ephemeris data

» Minimum of one segment
» Maximum:

• The practical maximum is a few thousand segments
• Serious performance degradation occurs above 100000 segments for a single body
• Absolute limits are imposed by the range of the INTEGER data type for your computer

– Numerous SPK types may be used within an SPK file, but only one SPK 
type may appear within a given segment

– Segments of different types may be intermixed within a given SPK file



Navigation and Ancillary Information Facility

N IF

Making an SPK File 14

What is an SPK Segment?

• A segment is a collection of information:
» providing ephemeris (position and velocity) of a single object …
» given relative to a single center of motion …
» specified in a single reference frame known to SPICE …

• Either built-in (“hard coded”) or defined in a loaded frames kernel (FK)
» covering a specified, continuous period of time, and
» using a single SPK data type

– Example: ephemeris for the Voyager 2 spacecraft, relative to the center 
of the Neptunian system (Neptune’s barycenter), given in the J2000 
inertial reference frame, covering a specific period of time, and using  
Hermite interpolation with variable length intervals, produced using 
SPK Type 13

• An SPK segment must contain enough data to yield an 
object’s state at any epoch within the time bounds 
associated with the segment

– This has implications that depend on the SPK type being produced



Navigation and Ancillary Information Facility

N IF

Making an SPK File 15

Discussion applicable to all
SPK production methods



Navigation and Ancillary Information Facility

N IF

Making an SPK File 16

The SPK Family
Type Description Notes

1 Modified divided difference arrays Unique form produced at JPL; not likely to be useful to others.

2 Chebyshev polynomials for position; fixed length time 
intervals.

Velocity is obtained by differentiation. Used at JPL for planets. 
Evaluates quickly.

3 Chebyshev polynomials for position and velocity; fixed 
length time intervals

Separate polynomial sets for position and velocity. Used at JPL for 
natural satellites.

4 Special form used only by Hubble Space Telescope Not available for general use.

5 Discrete states using weighted two-body propagation Ok if motion very closely approximates two-body motion.

6 Special form of trigonometric expansion of elements for 
Phobos and Deimos

Not available for general use.

7 Precessing elements Not available for general use.

8 Lagrange interpolation of position and velocity; fixed 
length intervals between states

Use Type 9 unless state spacing is truly uniform when measured 
in the TDB system.

9 Lagrange interpolation of position and velocity; variable 
length intervals between states

Versatile type; easy to use with MKSPK.

10 Weighted two-line element sets (Space Command) Handles both “near-earth” and “deep space” versions.

11 Not used

12 Hermite interpolation of position and velocity; fixed 
length intervals between states

Use Type 13 unless state spacing is truly uniform when measured 
in the TDB system.

13 Hermite interpolation of position and velocity; variable 
length intervals between states

Versatile type; easy to use with MKSPK. Use for DSN support.

14 Chebyshev polynomials for position and velocity, 
variable length time intervals

The most flexible of the Chebyshev types.

15 Precessing conic elements propagator ---

16 Special form used by ESA’s Infrared Space Observatory Not available for general use.

17 Equinoctial elements Used for some satellites.

18 Emulation of ESOC’s “DDID” format Used for SMART-1, MEX, VEX, and Rosetta

19 Revised emulation of ESOC’s “DDID” format Similar to Type 18, but uses “mini-segments” to reduce the 
number of true segments needed. (New in N65 toolkits.)

20 Chebyshev polynomials for velocity; fixed length time 
intervals.

Provided to handle ephemerides produced by the Institute of 
Applied Astronomy in St. Petersburg, Russia.  (New in N65 
toolkits.)

21 Modified divided difference arrays Same as Type 1 except allows greater number of coefficients.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 17

Recommended SPK Data Types - 1

• SPK type 2 (Chebyshev polynomials for position, velocity given by 
differentiation)   Used at JPL for planetary ephemerides.

• SPK type 3 (Separate Chebyshev polynomials for position and velocity) 
Used at JPL for satellite ephemerides.

• SPK type 5 (Weighted two-body extrapolation)   Often used for comets 
and asteroids, as well as for sparse data sets where a two-body 
approximation is acceptable.

• SPK types 9 and 13 (Sliding-window Lagrange and Hermite interpolation 
of unequally-spaced states)   Often used by users of NAIF’s “Make SPK” 
(MKSPK) application.

• SPK type 10 (weighted Space Command two-line element extrapolation) 
Often used for earth orbiters.

• SPK type 14 (Separate Chebyshev polynomials for position and velocity, 
with variable time steps)  This is the most flexible Chebyshev data type.

• SPK type 15 (Precessing conic elements)   Provides a very compact 
ephemeris representation; limited to orbits where this type of 
approximation is valid.

• SPK type 17 (Equinoctial elements)   Most suited for representation of 
ephemerides of natural satellites in equatorial or near-equatorial orbits.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 18

Recommended SPK Data Types - 2

• Each type has certain properties that may 
promote or limit its usefulness in a particular 
application. These properties include but are not 
limited to the following.

» Ability to model the actual ephemeris to be represented with 
the accuracy required for your application.

» Consistency between velocity and derivative of position.
» Evaluation speed (performance).
» Compactness (file size).
» Availability of SPICE software needed to write files of that 

type.
• Users are encouraged to consult with NAIF about 

the suitability of an SPK type for a particular 
purpose. 



Navigation and Ancillary Information Facility

N IF

Making an SPK File 19

Creating Multiple SPK Segments

• Each SPK segment must have a single object, center of motion, 
reference frame and SPK data type.

• Limiting segment size to 10,000 states or “packets of ephemeris data” 
can improve performance when searching within a segment. 

– Absolute limits on segment size depend on the size of the INTEGER data type.
• The total number of segments for any one body in a single SPK file must 

be kept under the dimension of the SPKBSR segment buffer, currently 
set to 100,000.

– The total number of segments for any one body, contributed by all loaded SPK files, must 
be kept under the 100K limit.

– For best efficiency, the total number of concurrently loaded segments for all bodies 
should be less than this 100K limit. Adherence to this criterion ensures that loaded SPK 
files need not be searched repeatedly for segment descriptors (which contain summary 
data).

– More details about reading efficiency are provided at the end of this tutorial.
• One may elect to initiate a new segment (or more) as the means for 

modeling a propulsive maneuver.
– This is because the SPK reader modules will NOT allow interpolation over a segment 

boundary.
• When starting a new segment you may use a new segment identifier, for 

instance to indicate a new trajectory leg after a maneuver.
– Can only be done if using SPK writer modules–not if using the MKSPK application.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 20

Choosing Polynomial Degree

• If you make a Type 8 or 9 (Lagrange interpolation) or 
a Type 12 or 13 (Hermite interpolation) SPK file you 
must specify the degree of the interpolating 
polynomial that the SPK reader subroutine will use.
– This choice needs some consideration about desired accuracy, file 

size and evaluation speed (performance).
– This choice is also affected by the “smoothness” of the orbit data 

you wish to represent with an SPK file.
– The allowed range of degree is 1-to-27. In addition, to ensure 

position and velocity continuity over the time span covered by the 
orbit data:
» for Types 8 and 9, the polynomial degree must be odd.
» for Types 12 and 13, the polynomial degree must be equivalent 

to 3-mod-4, meaning degree 3, 7, 11, 15, 19, 23 or 27.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 21

Reference Frame

• Any reference frame known to the SPICE system, 
whether built-in (hard coded) or defined at run time 
through a Frames Kernel (FK), may be used for 
ephemeris data placed in an SPK file.
– Exception: don’t use a “two-vector” dynamic frame type
– If the frame is provided via an FK, that same FK must be used when 

reading the SPK

• Some examples of typical reference frames used:
– Inertial (non-rotating):

» J2000: (Earth Mean Equator and Equinox of J2000, a.k.a. 
EME2000)

» ECLIPJ2000: (Mean ecliptic and equinox of J2000)
– Body-fixed (non-inertial)

» ITRF93:  (International Terrestrial Reference Frame, for earth)
» MOON_PA: (MOON_Principal Axes)



Navigation and Ancillary Information Facility

N IF

SPK Production Methods



Navigation and Ancillary Information Facility

N IF

Making an SPK File 23

Choices for Making an SPK File

• There are two* methods available for making an SPK 
file.
1. Take an ephemeris data file produced by your own trajectory 

propagator program and input this into the conversion utility 
(MKSPK) provided by NAIF that outputs an SPK file.

2. Incorporate the appropriate SPK writer modules (subroutines) into 
your own code:
» Add these routines to your trajectory estimator/propagator.
or...
» Write your own “post-processor” conversion utility, similar to 

MKSPK mentioned above.

• Both methods are described in the next few pages.

*The OEM2SPK and NIOSPK specialized utilities are 
also methods, but are not discussed in this tutorial.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 24

Making Your Choice - 1

• Using the MKSPK program provided in the Toolkit 
could be the easiest and safest for many situations.
– Provides considerable flexibility for accepting a wide assortment of 

input data formats.
– Allows one to make multi-segment SPK files when the target, center 

of motion, reference frame, or SPK type changes. 
» But not as straight forward as it could/should be.

• Best done through multiple program executions (although one could 
be tricky and accomplish this in a single execution).

• A future version of MKSPK may better accommodate this.
• Note: production of multiple segments in type 5, 8, 9, 12 and 13 SPK 

files, when the amount of input data requires this, is automatically 
handled.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 25

Making Your Choice - 2

• Using the SPK “writer” modules found in 
SPICELIB, CSPICE, Icy and Mice offers the 
greatest flexibility and user control.
– Using these requires that you write your own program.
– You’ll likely need to use some additional SPICE modules as 

well.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 26

Using NAIF’s
MKSPK

Application Program



Navigation and Ancillary Information Facility

N IF

Making an SPK File 27

Using the MKSPK Utility - 1

NAIF’s
MKSPK
Program

SPK File

Possible SPK
data types
produced are:

- Type 05
- Type 08
- Type 09
- Type 10
- Type 12
- Type 13
- Type 15
- Type 17

Suitable kinds of input ephemeris data are:

- Table of Cartesian state vectors
- Table of conic elements
- One or more sets of equinoctial elements
- One or more sets of Space Command two-

line elements

ASCII file of
ephemeris

data

Setup file

Optional 
comment

file



Navigation and Ancillary Information Facility

N IF

Making an SPK File 28

Using the MKSPK Utility - 2

This table indicates which SPK types
can be made from the four kinds
of input data accepted by MKSPK

Y = Yes     N = No

SPK Type Produced by MKSPK --> 5 8 9 10 12 13 15 17
Input Data Type
   Cartesian state vectors Y Y Y N Y Y Y Y
   Conic elements Y Y Y N Y Y Y Y
   Equinoctial elements N N N N N N N Y
   Space Command Two-line elements N N N Y N N N N



Navigation and Ancillary Information Facility

N IF

Making an SPK File 29

Using the MKSPK Utility - 3

• MKSPK will produce a file consisting of one or more 
segments as needed.
– It can write up to 10,000 data points in one segment.
– For multi-segment files based on types 5, 8, 9, 12 and 13, the 

program will repeat sufficient data points at both sides of each 
interior segment boundary to ensure the SPK file will provide a 
continuous ephemeris through the segment boundary epoch.

• You can use MKSPK to add a new segment to an 
existing SPK file.

• You can use SPKMERGE to merge two or more SPK 
files made from separate executions of MKSPK.
– It’s important to fully understand how SPKMERGE works if you do 

this; see the User’s Guide.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 30

Using the MKSPK Utility - 4

• MKSPK does not provide direct/specific means for 
including propulsive maneuvers within an SPK file.
– Instead, use either of these two methods.

» Append a new SPK segment to an existing SPK file, using 
MKSPK.

» Merge a collection of SPK files, using SPKMERGE.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 31

Using SPK “Writer” Modules



Navigation and Ancillary Information Facility

N IF

Making an SPK File 32

Using SPK Writer Routines

• The next several charts outline how to use the “SPK writer” 
modules available in the Toolkit libraries. The types 
available in the supported Toolkits are summarized below.*

SPK Types 
Supported

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

SPICELIB
(Fortran 77) ✔✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CSPICE
(C) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

ICY
(IDL) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

MICE
(MATLAB) ✔

* As of Toolkit version N66

= 4, 6, 7, 16: made for special circumstances; not available for general use

= 11: ID was not used



Navigation and Ancillary Information Facility

N IF

Making an SPK File 33

What Routines To Use - 1

SPKOPN Open a new SPK file.  (Use              
SPKOPA to append to existing file.)

SPKWxx Write a segment of SPK type xx

.

.
[SPKWxx] [ Write more segments ]

.                              [ Repeat as needed ]

.
SPKCLS Close the file

For all except SPK type 14

[ … ]  indicates possible multiple occurrences

These routine names are for the FORTRAN (SPICELIB) Toolkit. For CSPICE
the names are the same but are in lower case and have an “_c” appended.  For Icy 
and Mice, module names are case-insensitive and have "cspice_" prepended.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 34

What Routines To Use - 2

SPKOPN, SPKOPA Open file to add data 

SPK14B Begin a new segment

SPK14A Add data to segment

[SPK14A] Add more data

SPK14E End the segment

SPK14B Begin a new segment

SPK14A Add data to segment

[SPK14A] Add more data

SPK14E End the segment

etc.
SPKCLS Close the file

For SPK type 14

[SPK14A] indicates possible multiple occurrences

Repeat
as needed



Navigation and Ancillary Information Facility

N IF

Making an SPK File 35

Close the SPK File

• Once you have completed the addition of all 
data to your SPK file, be sure to call the 
SPKCLS routine to close the file.
– Failure to properly close an SPK file will result in a problem 

file having been produced.

• This point is emphasized here because it has 
been a frequent problem.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 36

Finishing Up



Navigation and Ancillary Information Facility

N IF

Making an SPK File 37

Not Quite Done Yet

• You’ve now used either MKSPK or the appropriate 
SPK writer routines to produce an SPK file. To 
complete the job you should do the following.
– Add comments (metadata) to the comment area of the SPK file.

» This could have been done during execution of MKSPK.
» It can be done after the SPK has been created by using the 

Toolkit’s “commnt” utility program.
– Validate the file before sending it off to your customer.
– Consider if there is a need to merge this newly made SPK file with 

others.

• See the next several charts for more information on 
these subjects.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 38

Add Comments (metadata)

• It is strongly recommended that the producer of an SPK file add 
to the file, in the “comment area,” appropriate descriptive 
information. Topics should include at least:

– when, how and by whom the file was created,
– intended use for the file,
– cautions or restrictions on how the file is to be used.

• The comments might also include some of these topics.
– Time coverage
– Ephemeris objects included
– Type(s) of data used (in the sense of reconstructed versus predicted)
– Any available estimates of accuracy
– Sources of the data used to produce this SPK file
– Name(s) of previously generated SPK file(s) being replaced by this file
– Any knowledge of plans for future updates to (replacements for) this file
– Name and version number of your SPK production program
– Type of platform (hardware/OS/compiler) on which the SPK file was generated

• If you are modifying an existing SPK file, be sure to check the 
existing comments to see if updates are needed in addition to 
adding appropriate new ones.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 39

How to Add Comments to an SPK

• Several means are available for adding 
comments (metadata) to an SPK file.
– An option in the MKSPK program allows comments 

supplied in a separate text file to be added to the 
comment area during MKSPK execution.

– Use the “COMMNT” utility program from the SPICE 
Toolkit.
» This may be run as an interactive program or in 

command line mode within a script.
– If using FORTRAN, C or IDL you can use APIs. 

» Not currently supported in MATLAB.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 40

Validate the SPK File

• Validation of SPK files is critical
– Caution is needed more for one-of-a-kind files than for those 

generated in a previously tested, unchanging process.
– Some SPICE utility programs might help with your validation.

» SPY: can do a variety of structure and semantic checks.
• SPY is available from the Utilities link of the NAIF website.

» SPKDIFF: used to statistically compare two supposedly similar 
SPK files.

• SPKDIFF is available in each Toolkit package and also from the Utilities link of 
the NAIF website.

– Consider writing your own validation program.
– Caution:  successfully running an SPK summary program (e.g. 

BRIEF or SPACIT) or successfully running the format conversion 
program (TOXFR or SPACIT) is a positive sign, but is not a 
sufficient test.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 41

Validate the Overall Process

• When you first start producing SPK files, or when 
changing the SPK “type” used or the kind of 
mission (trajectory) to be represented, validation 
(or revalidation) of the overall process is advised.
– Validation of not only SPKs, but of end products derived from 

SPKs, is advised.

• Consider writing a program that compares states 
from your source data with states extracted from 
your new SPK file.
– Do this using interpolated states from your source data–not 

just the states placed in the SPK file.
– Verify a uniformly good fit over the whole time interval covered 

by the file.



Navigation and Ancillary Information Facility

N IF Common SPK Production Errors

• Some of the most common SPK production errors 
are these
– Picking an SPK type that can not well represent the ephemeris 

data you wish to represent
– For Types 8, 9, 12 and 13, picking an invalid polynomial degree
– For Types 8, 9, 12 and 13, picking a polynomial degree that 

does not allow high fidelity representation of your source 
ephemeris

– For Types 8, 9, 12 and 13, having a HUGE change in time step 
size in two time-adjacent SPK segments

– For Types 8, 9, 12 and 13, allowing position and/or velocity data 
to have unduly large discontinuities at segment boundaries

– Leaving time gaps between segments (even very small, sub-
second gaps can cause problems for users)

• It takes careful design to avoid, and careful 
validation to detect some of these!

Making an SPK File 42



Navigation and Ancillary Information Facility

N IF

Making an SPK File 43

Make a Merged SPK File ?

• Sometimes it is helpful to customers if portions of two 
or more SPK files are merged into just one.
– (Sometimes the opposite is true, so be careful!)

• If making a merged product is appropriate, use the 
SPICE utility SPKMERGE.
– Read the SPKMERGE User’s Guide.

» Be especially aware of how SPKMERGE directives affect the 
precedence order of the data being merged. (This is different from 
the precedence order that applies when one reads an SPK file or 
files.)

– Carefully examine your results (probably using either BRIEF or 
SPACIT) to help verify you got what you expected.

• If you’ve made a merged SPK file, check to see that the 
included comments are appropriate.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 44

Get Help

• Considering consulting with JPL’s NAIF team for 
assistance with:
– picking the SPK type to be used
– picking the method for producing SPK files
– designing tests to validate the process

• Examine SPK files from other missions that could 
help you check your process.
– Such files can be found under the "Data" link on the NAIF 

website.



Navigation and Ancillary Information Facility

N IF

Backup

• Making SPKs for use by the DSN
• SPK reading efficiency

Making an SPK File 45



Navigation and Ancillary Information Facility

N IF

Making an SPK File 46

DSN Interface Overview

• SPKs prepared for use in the DSN/SPS may be used in one 
or more of four DSN software sets:

– Metric Predicts Generator (MPG)
» Used for view period generation, DSN scheduling and DSN metric 

predicts (antenna pointing and tuning of the transmitters and 
receivers)

– Telecomm Predicts (UTP/TFP)
» Subsystem for prediction and analysis of telecommunications 

signal levels
– Radiometric Modeling and Calibration Subsystem (RMC)

» Used to calibrate atmospheric effects on radio waves
– Delta Differenced One-way Range (Delta-DOR) subsystem

» A special tracking data type providing additional precision to 
spacecraft navigation

• All SPKs delivered to the SPS must pass through a front-
end gateway that has some restrictions that go beyond 
SPICE requirements; see the next page.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 47

SPS Validation Gateway

• The SPS’ front-end gateway requires:
– an SPK contain data for only one spacecraft

» The presence of non-spacecraft ephemeris data is ok
– an SPK have no data gaps for the spacecraft

• Additionally, for historical reasons, the spacecraft 
SPK must be of Type 1 or Type 13
– This restriction could be diminished or removed sometime in 

the future if DSN personnel find time to test the Metric Predicts 
Generator code using additional SPK data types.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 48

SPK Reading: Efficiency Issues - 1

• SPK file creators should design files to support 
efficient read access by those who will use the SPKs.
– This requires knowledge of how SPK file attributes impact efficiency.

• When you store "large" amounts (>10^7 states or data 
packets) of ephemeris data in one or more SPK files, 
SPK reading efficiency may be affected by:
– SPK segment size
– the number of segments for a body in one SPK file
– the number of segments for a body contributed by multiple SPK files
– the number of loaded segments for all bodies
– the number of loaded files



Navigation and Ancillary Information Facility

N IF

Making an SPK File 49

SPK Reading: Efficiency Issues - 2

• Segment size
– When a segment contains more than 10,000 states or data packets, 

the SPK readers will generally take longer to search the segment for 
requested data.  
» When the segment is larger than this size, more records are read 

to look up segment directory information.  If these records are not 
buffered, more physical records are read from the SPK file.                   

– There is a trade-off between segment size and numbers of segments 
and files.
» It can be preferable to have large segments rather than have "too 

many" segments or files. (Read on)



Navigation and Ancillary Information Facility

N IF

Making an SPK File 50

SPK Reading: Efficiency Issues - 3

• Number of segments for a body in one SPK file
– An SPK file MUST not contain more segments for one body 

than can be "buffered" at one time.
» The SPK reading system buffers coverage descriptions ("segment 

descriptors") for segments it has examined to satisfy previous 
requests for state data.

• Don't confuse descriptor buffering with data buffering.
– The SPK reading system also buffers segment DATA, as opposed to 

segment descriptors, but this is not relevant to this discussion.
» One fixed-size buffer is used for all SPK segment descriptors.

• The size of this buffer is given by the parameter "STSIZE," declared in 
the SPKBSR suite of routines. 

• STSIZE is currently set by NAIF to 100,000.
– NAIF recommends that users NOT change this parameter since 

maintenance problems may result.
» Unsurprisingly, the system works best when all needed segment 

descriptors are buffered simultaneously.

continued on next page



Navigation and Ancillary Information Facility

N IF

Making an SPK File 51

SPK Reading: Efficiency Issues - 4

• Number of segments for a body in one SPK file, 
continued.

» The buffering scheme is "lazy":  no descriptors are buffered for 
segments that haven't been examined.

• But when an SPK file is searched for data for a specified body, descriptor data for 
ALL segments in the file for that body are buffered.

» The buffering algorithm can "make room" in the buffer by 
discarding unneeded, buffered descriptor data.

• A "least cost" algorithm decides which buffered data to discard.

» When more buffer room is needed than can be found:
• The SPK reading system reads data directly from SPK files without 

buffering descriptor information.
• This is NOT an error case:  the SPK system will continue to provide 

correct answers. But the system will run VERY SLOWLY.  
– This situation  is analogous to "thrashing" in a virtual-memory 

operating system.
– If buffer overflow occurs frequently, the SPK reading system may be 

too slow to be of practical use.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 52

SPK Reading: Efficiency Issues - 5

• Number of segments for a body contributed by 
multiple SPK files:
– Buffer overflow can occur if too many segments for one body are 

contributed by multiple loaded SPK files.
» Overflow can take longer to occur than in the single-SPK case, 

due to lazy buffering:  files that haven't been searched don't 
consume buffer space.

• Thus an impending overflow problem may not be detected early in a 
program run.

– User applications can avoid buffer overflow if data are appropriately 
spread across multiple SPK files.
» Applications can avoid buffer overflow by:

• loading only those files of immediate interest
• unloading files once they're no longer needed



Navigation and Ancillary Information Facility

N IF

Making an SPK File 53

SPK Reading: Efficiency Issues - 6

• Number of segments for all bodies, contributed by all 
loaded SPK files:
– Buffer overflow does not result from loading SPK files contributing 

more than STSIZE segments for different bodies.
– However, if the total number of loaded segments for bodies of 

interest exceeds STSIZE, thrashing can occur as descriptor data are 
repeatedly discarded from the buffer and then re-read.
» Loaded segments for bodies for which data are not requested do 

not contribute to the problem.
– For best efficiency, load only files contributing fewer than a total of 

STSIZE segments for all bodies of interest.
» When more than STSIZE segments are needed, applications 

should process data in batches:  unload files containing 
unneeded data in order to make room for new files.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 54

SPK Reading: Efficiency Issues - 7

• Number of loaded SPK files:
– Up to 5000 SPK files may be loaded at one time by an application.

» The 5000 limit applies to DAF-based files, so loaded C-kernels and 
binary PCK kernels count against this limit.

– But loading large numbers of SPK files hurts efficiency:
» Since operating systems usually allow a process to open much 

fewer than 5000 files, the SPK system must open and close files 
via the host system's file I/O API in order to provide a "virtual" 
view of 5000 open files.

• The more such file I/O, the slower an application runs.
» Loading a large number of SPK files could result in a buffering 

problem if too many segments are loaded for the bodies of 
interest.



Navigation and Ancillary Information Facility

N IF

Making an SPK File 55

SPK Reading: Efficiency Issues - 8

• Recommendations
– Limit segment counts to avoid buffer overflow and thrashing

» Never have more than STSIZE segments for one body in an SPK 
file and never have more than STSIZE segments for one body 
loaded simultaneously.

» Don't require users to have more than STSIZE segments loaded at 
one time.

» If necessary, use larger segments to enable smaller segment 
counts.

– Consider distributing SPK data across multiple files …
» so as to make selective SPK loading convenient

• facilitate processing data in batches
» so that loading very large numbers of SPK files at once is 

unnecessary


