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Exceptions Are... -1
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* Run-time error conditions such as:
— Files
» Required files not loaded
» Gaps in data
» Corrupted or malformed files (e.g. ftp’d in wrong mode)
— Invalid subroutine/function arguments
» String values unrecognized
» Numeric values out of range
» Data type/dimension mismatch
— Arithmetic errors
» Divide by zero, taking the square root of a negative number
— Environment problems
» Insufficient disk space for output files
» Lack of required read/write permission/privileges

Exception Handling



Exceptions Are... - 2

Navigation and Ancillary Information Facility

« Valid but unusual conditions, such as:
» Normalize the zero vector
» Find the rotation axis of the identity matrix
» Find the boresight intercept lat/lon for a non-intercept case
» Find a substring where the end index precedes the start index
— Such cases are normally not SPICE “Error Conditions”
— Typically must be handled by a logical branch

« Errors found by analysis tools, such as:
» Invalid SQL query
» Invalid string representing a number
— Such cases are normally not SPICE “Error Conditions”

— However, if a SPICE parsing routine failed because it couldn’t open
a scratch file, that would be an “error condition”
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@ SPICE “Errors”
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* Most “errors” made while using SPICE result from
a mistake in how you are trying to use SPICE
code, or in how you are trying to use SPICE files

— It’s rare that a SPICE user finds an error within SPICE Toolkit
code

 The SPICE “exception handling subsystem” helps
detect user’s errors

« All “errors” detected by SPICE result in a SPICE
error message
— Such errors will not make your program crash

« A program crash indicates an error in your own
code, a corrupted SPICE kernel, or (rarely) a
SPICE bug
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Language Dependencies
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« SPICELIB and CSPICE provide essentially identical error
handling capabilities.

* Icy and Mice provide similar error handling functionality;
this functionality is quite different from that of CSPICE.
— These systems do rely on CSPICE for most error detection.

— lcy and Mice provide no API for customizing underlying CSPICE error
handling behavior.

— Short, long, and traceback error messages are merged into a single,
parsable, message.

— Use IDL or MATLAB features to customize error handling...
» to prevent your program from stopping.
» to capture SPICE error messages.

 Most of this tutorial deals with SPICELIB and CSPICE error
handling.

— There is a bit on Icy and Mice near the end.
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Fortran and C Error Handling Features - 1
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* Error handling in SPICE: safety first

— Trap errors where they occur; don’t let them propagate.
» Don’t let errors “fall through” to the operating system.
— Supply meaningful diagnostic messages.
» Incorporate relevant run-time data.
» Supply context in human-readable form.
— Don’t depend on callers to handle errors.
» Normally, “error flags” are not returned to callers.
— Stop unless told not to.
» Don’t try to continue by making “smart guesses.”

« Subroutine interface for error handling

— Interface routines called within SPICE may be called by users’
application programs
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Fortran and C Error Handling Features - 2
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Signal errors

— Create descriptive messages when and where an error is detected
» Short message, long message, (explanation), traceback

— “Signal” the error: set error status, output messages
» By default, CSPICE error output goes to stdout (not stderr)

Retrieve error information
— Get status and error messages via subroutine calls

Customize error response---actions taken when an error
occurs.

— Set error handling mode (“action”)
— Set error output device
— Set message selection

Inhibit tracing

— To improve run-time performance (only for thoroughly debugged code)
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Error Messages
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« Short message

— Up to 25 characters.
— Can easily be compared with expected value.
» Example: SPICE(FILEOPENFAILED).

 Long message
— Up to 1840 characters.
— Can contain values supplied at run time.
» Example: 'The file <sat077.bsp> was not found.’

 Traceback
— Shows call tree above routine where error was signaled.
» Not dependent on system tracing capability.
» Don’t need a “crash” to obtain a traceback.
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Error Handling Actions - 1
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« ABORT

— Designed for safety.
» Output messages and traceback to your screen or stdout.
» Stop program; return status code if possible.

- RETURN

— For use in programs that must keep running.
— Attempts to return control to the calling application.

— Preserves error information so calling application can respond.

» Output messages to current error device.
» Set error status to “true”: FAILED() will return “true.”
» Set “return” status to “true”: RETURN() will return “true.”

» Most SPICE routines will return on entry. Very simple
routines will generally execute anyway.

continued on next page
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Error Handling Actions - 2
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» Capture traceback at point where error was signaled.
» Inhibit error message writing and error signaling.
» Must call RESET to resume normal error handling.
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Error Device
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« Destination of error messages

— Screen/stdout (default)
— Designated file

» Error diagnostics are appended to the file as errors are
encountered.

— “NULL” --- suppress output
» When the NULL device is specified, error messages can
still be retrieved using API calls.
* Limitations
— In C, cannot send messages to stderr.

— In C, writing to a file opened by means other than calling
errdev_c is possible only if CSPICE routines were used to open
the file.

» These limitations may be removed in a later version of
CSPICE.

Exception Handling
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Customize Error Handling - 1

Navigation and Ancillary Information Facility

 Set error action
— CALL ERRACT ( ‘SET’, ‘RETURN’)
— erract_c ( “set”, LEN, “return” );

» Length argument is ignored when action is “set”; when
action is “get”, LEN should be set to the available room in
the output string, for example:

» erract_c ( “get”, ACTLEN, action );

« Set error device
— CALL ERRDEV ( ‘SET’, ‘errlog.txt’ )
— errdev_c ( “set”, LEN, “errlog.txt” );

 Select error messages
— CALL ERRPRT ( ‘SET’, ‘NONE, SHORT, TRACEBACK’ )

» If tracing is disabled (see next page), selecting
TRACEBACK has no effect.

— errprt_c ( “set”, LEN, “none, short, traceback” );

Exception Handling
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Customize Error Handling - 2
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* Disable tracing

— Normally done to speed up execution by a few percent
— Benefit is highly dependent on application
— NAIF normally recommends users not turn tracing off
— Use TRCOFF:

» CALL TRCOFF or trcoff c();

* Do this at the beginning of your program.
* Once disabled you cannot re-enable tracing during a program run.

Exception Handling
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Get Error Status - 1
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 Use FAILED to determine whether an error has
been signaled
- IF ( FAILED() ) THEN ..
- if ( failed c() ) { ...
* Use FAILED after calling one or more SPICE
routines in a sequence

— Normally, it’s safe to call a series of SPICE routines without
testing FAILED after each call

 Use GETMSG to retrieve short or long error
messages
— CALL GETMSG ( ‘SHORT’, SMSG )
- getmsg ¢ ( “short”, LEN, smsqg );

Exception Handling
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@ Get Error Status - 2
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 Use QCKTRC or TRCDEP and TRCNAM to retrieve
traceback message

* Test value of RETURN() to determine whether
routines should return on entry

— Only relevant if user code is designed to support RETURN
mode

« Handle error condition, then reset error status:
— CALL RESET
- reset _c();

— In Icy-based applications you only need handle the error
condition; a reset is automatically performed by Icy

Exception Handling

16



Signal Errors - 1
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 Create Iong error message
— Up to 1840 characters

— Use SETMSG
» CALL SETMSG ( ‘File <#> was not found.’ )
» setmsg c ( “File <#> was not found.” );
« Substitute string, integer, or d.p. values at run time
— Use ERRCH
» CALL ERRCH ( ‘#’, ‘cassini.bsp’ )
» errch c ( “#”, “cassini.bsp” );

— Also can use ERRINT, ERRDP
— In Fortran, can refer to files by logical unit numbers: ERRFNM

Exception Handling
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Signal Errors - 2
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« Signal error

— Use SIGERR to signal error. Supply short error message as
input to SIGERR.

» CALL SIGERR ( ‘FILE OPEN FAILED’ )
» sigerr c ( “FILE OPEN FAILED” ) ;
— “Signaling” error causes SPICE error response to occur
» Output messages, if enabled
» Set error status
» Set return status, if error action is RETURN
» Inhibit further error signaling if in RETURN mode
» Stop program if in abort mode

* Reset error status after handling error
— CALL RESET()
— reset_c()

Exception Handling
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Icy Error Handling
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« Error action:

— By default, a SPICE error signal stops execution of IDL scripts; a SPICE error

messa%e is displayed; control returns to the execution level (normally the command
t).

promp

No other modes are used.
» The CSPICE error state is reset after detecting an error.
— Use the IDL CATCH feature to respond to error condition.
* Error status
— Value of lerror_state.name
» ICY_M_BAD_IDL_ARGS - indicates invalid argument list.
» ICY_M_SPICE_ERROR - indicates occurrence of a SPICE error.
 Error message

— CSPICE short, long, and traceback error messages are merged into a single,
parsable, message.

» The merged error message is contained in the variable lerror_state.msg.
» Example:
CSPICE_ET2UTC: SPICE (MISSINGTIMEINFO): [et2utc->ET2UTC->UNITIM]

The following, needed to convert between the
uniform time scales, could not be found in the
kernel pool: DELTET/DELTA_T_A, DELTET/K,

DELTET/EB, DELTET/M. Your program may have failed to load.

Exception Handling

Icy sets the CSPICE shared object library’s error handling system to RETURN mode.
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Mice Error Handling
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 Error action

— By default, a SPICE error signal stops execution of MATLAB scriFts; a SPICE
error message is displayed; control returns to the execution level.

— Mice sets the CSPICE shared object library’s error handling system to RETURN

mode. No other modes are used.
» The CSPICE error state is reset after detecting an error.
— Use the MATLAB try/catch construct to respond to error condition.

 Error message
— CSPICE short, long, and traceback error messages are merged into a single,
parsable, message.
» Example:
??? SPICE (MISSINGTIMEINFO) : [et2utc->ET2UTC->UNITIM]
The following, needed to convert between the
uniform time scales, could not be found in the

kernel pool: DELTET/DELTA_T_A , DELTET/K,
DELTET/EB, DELTET/M. Your program may have failed to load.

 Use the MATLAB function lasterror to retrieve SPICE error
diagnostics. When a SPICE error occurs:

— the “message” field of the structure returned by lasterror contains the SPICE
error message.

— the “stack” field of this structure refers to the location in the m-file from which
the Mice wrapper was called (and so is generally not useful).

— the “identifier” field of this structure currently is not set.
Exception Handling
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Recommendations
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* For easier problem solving

— Leave tracing enabled when debugging.

— Always test FAILED after a sequence of one or more
consecutive calls to SPICE routines.

— Don’t throw away error output. It may be the only useful clue as
to what’s going wrong.
» Programs that must suppress SPICE error output should
trap it and provide a means for retrieving it.
* Test FAILED to see whether an error occurred.
+ Use GETMSG to retrieve error messages
» Use RESET to clear the error condition

— Use SPICE error handling in your own code where appropriate.

— When reporting errors to NAIF, have SPICE error message
output available

» Note whether error output is actually from SPICE routines,

from non-SPICE code, or was generated at the system level.
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