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Abstract

The planetary and lunar ephemerides called DE440 and DE441 have been generated by fitting numerically
integrated orbits to ground-based and space-based observations. Compared to the previous general-purpose
ephemerides DE430, seven years of new data have been added to compute DE440 and DE441, with improved
dynamical models and data calibration. The orbit of Jupiter has improved substantially by fitting to the Juno radio
range and Very Long Baseline Array (VLBA) data of the Juno spacecraft. The orbit of Saturn has been improved
by radio range and VLBA data of the Cassini spacecraft, with improved estimation of the spacecraft orbit. The
orbit of Pluto has been improved from use of stellar occultation data reduced against the Gaia star catalog. The
ephemerides DE440 and DE441 are fit to the same data set, but DE441 assumes no damping between the lunar
liquid core and the solid mantle, which avoids a divergence when integrated backward in time. Therefore, DE441
is less accurate than DE440 for the current century, but covers a much longer duration of years −13,200 to
+17,191, compared to DE440 covering years 1550–2650.

Unified Astronomy Thesaurus concepts: Celestial mechanics (211); Orbital motion (1179); Orbits (1184); Solar
system planets (1260); Solar system (1528); The Sun (1693); The Moon (1692); Earth-moon system (436); Solar
system astronomy (1529); Pluto (1267)

1. Introduction

Modern-day planetary ephemerides are computed by fitting
numerically integrated orbits to various types of ground-based
and space-based observations (Folkner et al. 2014; Pitjeva &
Pitjev 2018; Fienga et al. 2020). The Jet Propulsion Laboratoryʼs
(JPL) planetary and lunar ephemerides Development Ephemeris
(DE) series includes the positions of the Sun, the barycenters of
eight planetary systems, the Moon, the Pluto system barycenter,
and lunar libration angles, as well as their associated velocities.
The high-precision orbits and lunar rotations around the three axes
have a wide range of practical and fundamental applications
(Thornton & Border 2003; Park et al. 2020b; Vallisneri et al. 2020;
U.S. Nautical Almanac Office & Her Majestyʼs Nautical Almanac
Office 2018). Without an update, however, the errors in orbits
grow for several reasons. For Jupiter (Juno 2016–2020< 12 yr
period), Saturn (Cassini 2004–2018, <30 yr period), Uranus,
Neptune, and Pluto the high-quality data are available for less than
one orbit. For Mars, the range data is of high quality, but the main-
belt asteroid masses are a limitation partly due to the large number
of asteroids and partly due to long-period perturbations (Folkner
et al. 2014). In the future, these errors grow nonlinearly with time.

The planetary and lunar ephemerides DE440 replaces DE430
released in 2014 (Folkner et al. 2014) and its precursors. Since
the DE430 release, several interim ephemerides have been
released. Each interim DE file was for a specific flight project,
which has been tuned for the flight projectʼs target body. For
example, the last release was DE438 in 2018 for the Juno
mission (Bolton et al. 2017). DE440 has updated all bodies
using all available data, including the Moon, which has not
been updated since DE430.

Since DE430, several updates have been made to the
dynamical model used to integrate DE440. Perturbations from
30 individual Kuiper belt objects (KBOs) and a circular ring
representing the rest of the Kuiper belt, modeled as 36 point
masses with an equal mass located at 44 au, have been added to
the model (Pitjeva & Pitjev 2018). The Lense–Thirring (LT)

effect from the Sunʼs angular momentum has also been added
(Park et al. 2017). For the orientation of Earth, the Vondrak
precession model has been used (Vondrak et al. 2011), which,
according to Vondrak et al. (2009), is more accurate for
integrations beyond ±1000 years than the Lieske precession
model (Lieske 1979) used for DE430. For the Moon, the effect
of geodetic precession on lunar librations has been added as
well as the solar radiation pressure force on the Earth–Moon
system orbits.
Compared to DE430, new data spanning over about 7 years

have been added to compute DE440. The shapes of Mercury,
Venus, and Mars orbits are determined mainly by the radio range
data of the MErcury Surface, Space ENvironment, GEochemistry,
and Ranging (MESSENGER), Venus Express, and Mars-orbiting
spacecraft, respectively. The orientations of inner planet orbits are
tied to the International Celestial Reference Frame (ICRF) via
Very Long Baseline Interferometry (VLBI) of Mars-orbiting
spacecraft (Folkner & Border 2015; Park et al. 2015). The orbit of
the Moon is determined from laser ranging to lunar retroreflectors.
The orbit accuracy of Jupiter has improved substantially by fitting
the orbit to the radio range and Very Long Baseline Array
(VLBA) data of the Juno spacecraft. The orbit of Saturn is
determined by the radio range and VLBA data of the Cassini
spacecraft, with improved spacecraft orbits used for processing the
radio range data. The orbits of Uranus and Neptune are
determined by astrometry and radio range measurements to the
Voyager flybys. The orbit of Pluto is now mainly determined by
stellar occultations reduced against the Gaia star catalog (Gaia
Collaboration et al. 2018; Desmars et al. 2019).
For the Moon, viscous damping between the liquid core and

the solid mantle are observed in the lunar laser ranging (LLR)
data. This implies an excitation of the relative motion of a lunar
core and mantel in the past, possibly due to a spin/orbit
resonance that occurred in geologically recent times (Rambaux
& Williams 2011). Both DE440 and DE441 have been fit to the
same data set, but DE441 assumed no damping between the
lunar liquid core and the solid mantle. In this way, a divergence
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can be avoided when integrated backward for thousands of
years. As a consequence, DE441 is less accurate than DE440
for the current century, but more accurate over longer past time
spans. DE441 covers years −13,200 to +17,191, compared to
DE440 covering years 1550–2650. The difference in the orbits
of the planets between DE440 and DE441 are less than 1 m
over the 1100 years of the DE440 time span. The difference in
the orbit of the Moon between DE440 and DE441 is less than
2 m during the time span of the LLR data, i.e., 1970–2020, but
increased over a longer time span, especially in the along-track
direction (i.e., velocity direction). Figure 1 shows the difference
in the lunar orbit relative to Earth between DE440 and DE441
over 200 years (i.e., DE441 minus DE440). In general, DE440
is recommended for analyzing modern data while DE441 is
recommended for analyzing historical data earlier than the
modern range data.

2. Coordinates of Planetary and Lunar Ephemerides

2.1. Inertial Reference Frame

The inertial coordinate frame of the planetary and lunar
ephemerides is connected to the International Celestial
Reference System (ICRS). The current ICRS realization is
achieved by VLBI measurements of the positions of extra-
galactic radio sources (i.e., quasars) defined in the Third
Realization of the International Celestial References Frame
(ICRF3; Charlot et al. 2020), which is adopted by the
International Astronomical Union (IAU). The orbits of the
inner planets are tied to ICRF3 via VLBI measurements of
Mars-orbiting spacecraft (Konopliv et al. 2016) with respect to
quasars with positions known in the ICRF. Overall, the
orientations of inner planet orbits are aligned with ICRF3 with
an average accuracy of about 0.2 mas (Folkner & Border 2015;
Folkner et al. 2014; Park et al. 2015). The orbits of Jupiter and
Saturn are tied to ICRF3 via VLBA measurements of Juno and
Cassini spacecraft (Jones et al. 2020), respectively.

2.2. Solar System Barycenter

The solar system barycenter (SSBC) is defined as (Estabrook
1971)
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where GMi is the mass parameter of body i, c is the speed of
light, vi is the barycentric speed of body i, and = -r rrij i j∣ ∣ is
the distance between bodies i and j.
For DE440, the bodies used for computing the SSBC were

the Sun, barycenters of eight planetary systems, the Pluto
system barycenter, 343 asteroids, 30 KBOs, and a KBO ring
representing the main Kuiper belt. The 343 asteroids were the
same set of asteroids used in DE430, which consist of ∼90% of
the total asteroid-belt mass. The mass of the 30 largest known
KBOs were from Pitjeva & Pitjev (2018). The circular KBO
ring was modeled as 36 point masses with equal mass located
in the ecliptic plane with a semimajor axis of 44 au, with the
ring mass estimated.
Figure 2 shows the motion of the SSBC relative to the Sun

for 100 years (2000–2100), which is sometimes called the solar
inertial motion (SIM). Compared to DE430, SSBC has shifted
by ∼100 km, which is mainly due to the addition of KBOs. It is
important to note that, to the first order, Earth orbits around the
Sun, not around the SSBC. This point is reflected in Figure 3,
which shows the time history of the closest (e.g., perihelion)
and farthest (e.g., aphelion) points of the Earth–Moon
barycenter (EMB) relative to the Sun and the SSBC. The
near-constant distance of the perihelion and aphelion of the
EMB relative to the Sun indicates that SIM does not affect
the orbit of Earth relative to the Sun.

2.3. Ephemeris Coordinate Time

JPLʼs DE series are integrated using the barycentric
dynamical time (TDB), which is defined relative to the
barycentric coordinate time (TCB; Petit & Luzum 2009). All
of the data used to compute DE440 and DE441 had the
intrinsic time tag in the coordinated universal time (UTC),
which differs from the international atomic time (TAI) by leap
seconds (i.e., TAI=UTC+ leap seconds). In order to process
these UTC-tagged measurements, the conversion from UTC to
TDB would be needed (Soffel et al. 2003; Petit & Luzum 2009).
Once the TAI time is computed, 32.184 s are added to compute
the terrestrial time (TT; i.e., TT= TAI+ 32.184 s). The

Figure 1. Difference in the lunar orbit relative to Earth between DE440 and DE441 (i.e., DE441 minus DE440) in radial (R), transverse (T), and normal (N) directions.
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conversion from TT to TDB (in Julian days) is given by
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where LG= 6.969290134× 10−10 defines the rate of TT with
respect to geocentric coordinate time (TCG), LB= 1.550519768×
10−8 defines the rate of TDB with respect to TCB, T0 is

2443144.5003725 Julian days, = - ´
-

TDB 65.50
10

86400

6

days, vE
is the velocity of the Earth, vE is the velocity vector of the Earth, rE
is the position vector of the Earth, and rS is the position vector of a
measurement station. The potential term w0E is defined as
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with the summation over all bodies other than Earth. The
potential due to external oblate figures wLE is defined as
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where J2e is the unnormalized second-degree gravitational
zonal harmonic of the Sun, Re is the solar radius, and jE,e is
the heliocentric ecliptic latitude of Earth. The term wiE is
defined as

å=
¹

w
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Figure 2. Position of the solar system barycenter relative to the Sun in XY (left) and XZ (right) heliocentric ecliptic planes, respectively. The yellow circle represents
the Sun.

Figure 3. Distances of the closest and farthest points of the Earth–Moon barycenter relative to the Sun and SSBC of DE440.
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where the summation is over all bodies other than Earth. Lastly,
ΔE is defined as
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where ai is the acceleration of body i and the summation is over
all bodies.

2.4. Orientation of the Moon

LLR measures the round-trip light time of a laser pulse
between an Earth LLR station and a retroreflector on the Moon.
Thus, LLR data are not only sensitive to where the Moon is,
but they are also sensitive to its orientation.

The orientation of lunar exterior (mantle and crust, hereafter
referred to as the mantle) is defined by the principal axes (PAs)
of the undistorted lunar mantle, and thus its moment of inertia
matrix is diagonal. The directions of the PAs are taken from
analyses of the Gravity Recovery and Interior Laboratory
(GRAIL) data (Konopliv et al. 2013; Lemoine et al. 2013). The
Euler angles that define the rotation from the PA frame to the
inertial ICRF3 frame are: fm, the angle from the X-axis of
the inertial frame along the XY plane to the intersection of the
mantle equator; θm, the inclination of the mantle equator from
the inertial XY plane; and ψm, the longitude from the
intersection of the inertial XY plane with the mantle equator
along the mantle equator to the prime meridian. The rotation
from the lunar PA frame (i.e., lunar mantle frame) to ICRF3 is
given as

f q y= - - -  r r . 8I z m x m z m PA( ) ( ) ( ) ( )
The Euler angles fm, θm, and ψm are also known as lunar

libration angles, stored in the DE440 and DE441 files. The
rotation matrices use the right-hand rule and are defined as
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These lunar libration angles are integrated simultaneously
with the orbital motion. The equations of motion for the lunar
libration angles are

f w y w y q= +sin cos sin , 12m m x m m y m m, ,( ) ( )

q w y w y= -cos sin , 13m m x m m y m, , ( )

y w f q= - cos , 14m m z m m, ( ) 

where ωm,x, ωm,y, and ωm,z represent the components of the
lunar mantle angular velocity ωm expressed in the mantle
frame. The time derivatives of ωm are given in Section 4.

The lunar orientation model includes a fluid core. The
orientation of the core with respect to the ICRF is represented
by the Euler angles fc, θc, and ψc, which are also numerically
integrated. Since the shape of the core/mantle boundary is
modeled as fixed to the frame of the mantle, it is more
convenient to express the core angular velocities with respect to
the mantle frame. The time derivatives of the core Euler angles
are then given by

f w y q= - cos , 15c c z c c, ( )† 

q w= , 16c c x, ( )†

y w q= - sin , 17c c y c, ( )†

where the core angular velocity ωc is related to the angular
velocity wc

† in a frame defined by the intersection of the core
equator with the inertial XY plane by

w wf f q y= - - -   . 18cc z c m x m z m( ) ( ) ( ) ( )†

The time derivatives of ωc are given in Section 4.
Most of lunar cartographic products are defined relative to

the DE421 mean-Earth/mean-rotation (MER) frame. The MER
frame is defined by the X-axis pointing toward the mean-Earth
direction and the Z-axis pointing toward the mean-rotation axis
direction. The rotation from the DE440 PA frame to the DE421
MER frame is estimated by comparing the coordinates of the
lunar retroreflectors estimated in the DE440 PA frame and the
retroreflector coordinates in the DE421 MER frame, which
yield

= -  - 
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67. 8526 . 19
x y

z
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Table 1 shows the five lunar retroreflector positions in the
DE440 PA frame and the corresponding lunar retroreflector
positions in the DE421 MER frame.

2.5. Orientation of Earth

Only the long-term change of the Earth orientation is
modeled in the ephemeris integration. The Earth orientation
model used for DE440 and DE441 is based on a long-term
precession model (Vondrak et al. 2011) and a modified

Table 1
XYZ Coordinates of Lunar Retroreflectors in the DE440 PA Frame and the

DE421 MER Frame

Retroreflectors DE440 PA Frame (m) DE421 MER Frame (m)

Apollo 11 1591967.049 1591747.649
690698.573 691222.200
21004.461 20398.110

Apollo 14 1652689.369 1652818.682
−520998.431 −520454.587
−109729.869 −110361.165

Apollo 15 1554678.104 1554937.504
98094.498 98604.886
765005.863 764412.810

Lunokhod 2 1339363.598 1339388.213
801870.995 802310.527
756359.260 755849.393

Lunokhod 1 1114291.452 1114958.865
−781299.273 −780934.127
1076059.049 1075632.692
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nutation model based on the IAU 1980 precession model
including only terms with a period of 18.6 years.

The Earth pole unit vector in the inertial frame, pE, can be
computed by the following steps.

First, the mean longitude of the ascending node of the lunar
orbit measured on the ecliptic plane from the mean equinox of
date is computed by

W=  ¢  -  ¢ 
+  + 

T
T T

125 02 40. 280 1934 08 10. 539
7. 455 0. 008 , 202 3 ( )

where T is the TDB time in Julian centuries (36,525 days) from
J2000.0. The nutation angles in longitude, Δψ, and obliquity,
Δε, are given by
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The true pole of date unit vector, pd, is computed by rotating
the Earth-fixed pole vector by the effect of the 18.6 year
nutation term to give
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where the mean obliquity ē is given by
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The pole unit vector in the inertial frame pE is computed by
precessing the pole of date to inertial coordinates using the
long-term precession model (Vondrak et al. 2011) plus an
estimated frame offset in x and y rotations,

= -F -F  p p , 25V x x y y dE ( ) ( ) ( )

where Φx and Φy are the estimated offsets of the EME2000 pole
from the ICRF pole and the precession matrix V is given by
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where k is the ecliptic pole vector and n is the mean equatorial
pole vector, derived from polynomial fits to a numerically
integrated long-term orientation of Earth (Vondrak et al. 2011).
The ∣·∣ operator represents the norm of a vector.

3. Translational Equations of Motion

This section presents the dynamical models of the planetary
and lunar ephemerides, including changes and updates made
compared to DE430. Some materials from DE430 (Folkner
et al. 2014) are repeated so that this paper can be self-contained
and the results can be reproduced.

3.1. Point-mass Acceleration

The point-mass interaction between planetary bodies is
governed by the parameterized post-Newtonian (PPN) formulation

(Will & Nordtvedt 1972; Moyer 2003)
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where the summations are over all bodies, and β and γ are the
Eddington–Robertson–Schiff parameters representing the mea-
sure of nonlinearity in the superposition law for gravity and the
amount of space curvature produced by a unit rest mass,
respectively, and are constrained to unity as predicted by the
general theory of relativity (GTR).
DE440 integrated the same set of bodies (i.e., Sun,

barycenter of eight planets, the Moon, Pluto barycenter, and
343 asteroids) used in DE430, but also included perturbations
from 30 KBOs and a KBO ring discussed in Section 2.2. The
key mass parameters used in DE440 are shown in Table 2, and
all other relevant parameters are given in the comment blocks
of the DE440 and DE441 files.

3.2. Point-mass Interaction with Extended Bodies

Nonspherical gravitational interaction has been modeled
using a spherical harmonic expansion. For Earth, the interac-
tion of the zonal harmonics up to the fifth degree and the point
masses of the Moon, Sun, Mercury, Venus, Mars, Jupiter, and
Saturn have been modeled. For the Moon, the interaction of a

Table 2
Planetary Masses Used in DE440 and DE441

Parameter Value

GMSun 132712440041.279419 km3 s−2 (estimated from DE440)
GMMercury 22031.868551 km3 s−2 (Konopliv et al. 2020)
GMVenus 324858.592000 km3 s−2 (Konopliv et al. 1999)
GMEarth 398600.435507 km3 s−2 (estimated from DE440)
GMMars System 42828.375816 km3 s−2 (Konopliv et al. 2016)
GMJupiter System 126712764.100000 km3 s−2 (SSD JPL 2020)
GMSaturn System 37940584.841800 km3 s−2 (SSD JPL 2020)
GMUranus System 5794556.400000 km3 s−2 (Jacobson 2014)
GMNeptune System 6836527.100580 km3 s−2 (Jacobson 2009)
GMPluto System 975.500000 km3 s−2 (Brozovic et al. 2015)
GMMoon 4902.800118 km3 s−2 (estimated from DE440)
GMCeres 62.62890 km3 s−2 (Park et al. 2016; Konopliv et al. 2018;

Park et al. 2019, 2020a)
GMVesta 17.288245 km3 s−2 (Konopliv et al. 2014; Park et al. 2014)
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degree and order 6 gravity field and the point masses of Earth,
Sun, Mercury, Venus, Mars, Jupiter, and Saturn have been
modeled. For the Sun, the interaction of the second-degree
zonal harmonic with all other bodies has been modeled.

The acceleration due to an extended body can be represented
as
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where the ξηζ coordinate system is defined such that the ξ-axis
is defined outward from the extended body to the point mass,
the ξζ-plane contains the figure spin-pole of the extended body,
and the η-axis completes the triad. Here, r is the distance
between the two bodies; n1 and n2 represent the maximum
degrees of the zonal and nonzonal spherical harmonic
coefficients, respectively; Pn and Pnm represent the unnorma-
lized degree-n Legendre polynomial and associated Legendre
function with degree-n and order-m, respectively; ¢Pn and ¢Pnm

represent the derivative of Pn and Pnm with respect to jsin ,
respectively; Jn represents the degree-n zonal harmonic
coefficient; Cnm and Snm represent the nonzonal spherical
harmonic coefficients for the extended body; R represents the
reference radius of the extended body; and λ and j represent
the longitude and latitude of the point mass in the extended-
body fixed coordinate system. Once the accelerations are
computed in the body fixed frame, they are transformed into the
inertial frame for integration.

There is also an interaction between the figure of an
extended body and a point mass, often called the indirect
acceleration. Given ai,figi−pmj, which denotes the acceleration of
the extended body i interacting with the point-mass external
body j expressed in an inertial frame, the corresponding
indirect acceleration of the point mass, aj,figi−pmj, is

= -- -a a
m

m
. 29j i j

i

j
i i j,fig pm ,fig pm ( )

For the Moon, the second-degree spherical harmonic
coefficients vary with time due to distortion by tides and
rotation. These coefficients are computed from the moment of
inertia tensors as a function of time and the detailed description
is given in Section 4. The second-degree spherical harmonic
coefficients are given by

=
- +
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where Iij,T represent the elements of the total lunar moment of
inertia matrix (see Section 4), mM is the lunar mass, and RM is
the lunar radius.

3.3. Acceleration of the Moon from Earth Tides

The lunar orbit is affected by the tides raised on Earth by the
Sun and Moon. The tidal distortion of Earth can be modeled
using the second-degree gravitational Love numbers, k2j,E,
where the order j is 0, 1, and 2 for long-period, diurnal, and
semidiurnal responses, respectively. See Section 2.2 in Wil-
liams & Boggs (2016) for more information.
A time-delay tidal model has been applied to account for the

tidal dissipation. The distorted response of Earth is delayed
with respect to the tide-raising forces from the Moon or Sun.
The appropriate time delay depends on the period of each tidal
component. Consequently, different time delays have been
employed for each order j. To allow for time delays shifting
across the diurnal and semidiurnal frequency bands, separate
time delays are associated with Earthʼs rotation and the lunar
orbit.
The acceleration of the Moon due to the Earth tides is

evaluated separately for the tides raised by the Sun and the
tides raised by the Moon. The Earth tides depend on the
position of the tide-raising body with respect to Earth, rT,
where T can denote either the Sun or the Moon. The position of
the tide-raising body is evaluated at an earlier time t- ¢t j,
where t¢j denotes the orbital time lag, for long-period ( j= 0),
diurnal ( j= 1), and semi-diurnal ( j= 2) responses. The
rotational distortion of Earth is delayed by a rotational time lag
τj, so that the distortion leads the direction to the tide-raising
body by an angle qtj

 , where q is the rotation rate of Earth. The
long-period zonal tides ( j= 0) do not depend on the rotation of
Earth, so τj= 0. The acceleration of the Moon due to the
distorted Earth depends on the position of the Moon with
respect to Earth (r) and on the modified position vector for the
tide-raising body (rj*) that is given for each order j by

qt t= - - ¢  r r t , 35j
T

z j T jE E* ( ) ( ) ( )

where E rotates the time-delayed position of the tide-raising
body with respect to Earth from the inertial frame to the Earth
fixed frame and z here means a right-handed rotation of the
vector t- ¢r tT j( ) by the angle qt- j

 about Earthʼs rotation axis.
For evaluation of the acceleration of the Moon, the vectors r

(Moon with respect to Earth) and rj* (time-delayed position of a
tide-raising body with respect to Earth) are expressed in
cylindrical coordinates with the Z-axis perpendicular to Earthʼs
equator so that r= ρ+ z and r= +r zj j j* * *.
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The acceleration of the Moon due to the tide raised on Earth
by each tide-raising body (Sun or Moon), aM,tide is given by
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where mT is the mass of the tide-raising body.
The tidal acceleration due to tidal dissipation is implicit in

the above acceleration. Tides raised on Earth by the Moon do
not influence the motion of the EMB. The effect of Sun-raised
tides on the barycentric motion is not considered.

The tidal bulge leads the Moon and its gravitational
attraction accelerates the Moon forward and retards Earthʼs
spin. Energy and angular momentum are transferred from
Earthʼs rotation to the lunar orbit. Consequently, the Moon
moves away from Earth, the lunar orbit period lengthens, and
Earthʼs day becomes longer. Some energy is dissipated in Earth
rather than being transferred to the orbit.

3.4. LT Acceleration

In DE440, the acceleration of each body other than the Sun
due to the gravito-magnetic effect of GTR, also known as the
LT effect, has been implemented (Moyer 2003; Park et al.
2017):

W= ´a v2 , 37i i,LT i ( )

where the LT angular velocity vector ΩI is given by

gW =
+

- +J
J r rG

c r r

1

2

3
, 38

i

i i

i
i 2 3 2

⎡
⎣⎢

⎤
⎦⎥

( ) ( · ) ( )

w=J pC M R , 392 ( )   

where G is the universal gravitational constant, γ is the
Eddington–Robertson–Schiff parameter from Section 3.1, c is
the speed of light, ri is position of the body with respect to the
Sun, Me is the Sunʼs mass, Ce is the Sunʼs polar moment of
inertia divided by M R 2( )  , where =C M R 0.068842( )   , Re

is the Sunʼs equatorial radius (696,000 km), ωe the is Sunʼs
rotation rate (14.1844 deg/day), and p is the unit spin-pole
direction of the Sun (R.A. of 286°.13 and decl. of 63°.87;
Archinal et al. 2018).

The LT effect is small, but it is important for fitting the
MESSENGER range data (Park et al. 2017). Overall, the LT
effect causes Mercuryʼs perihelion to precess at the rate of
about −0 0020/Julian century, which is about 7% of the
precession caused by the solar oblateness.

3.5. Solar Radiation Pressure

Photons carry energy and momentum so there is a very small
force directed away from the Sun. Like Newtonian gravity,
solar radiation pressure depends on the inverse-square distance
of the Sun. A simple solar radiation pressure model has been
implemented for Earth and the Moon, with accelerations given
by

e= -a
rGM

r
, 40E,srp E,srp

Sun SE

SE
3

( )

e= -a
rGM

r
, 41M,srp M,srp

Sun SM

SM
3

( )

where the acceleration due to solar radiation pressure is a
very small fraction of gravitational acceleration (Vokrouhlický
1997), i.e., εE,srp= 2× 10−14 for Earth and εM,srp=
1.44× 10−13 for the Moon. Here, rSE is the inertial Sun-to-
Earth position vector and rSM is the inertial Sun-to-Moon
position vector.

4. Rotational Dynamics of the Moon

The Moon is modeled as an anelastic mantle with a liquid
core. The orientations of the core and mantle are numerically
integrated for the core and mantle angular velocities. The
angular momentum vectors of the mantle and core are the
product of the angular velocities and the moments of inertia.
The angular momentum vectors change with time due to
torques and due to the distortion of the mantle.

4.1. Rate of Change of Lunar Angular Velocities

In a rotating system, the change in angular velocity ω is
related to torques N by

w w w= + ´N I I
d

dt
, 42( ) ( )

where I is the moment of inertia tensor. The second term on the
right-hand side puts the time derivative into the rotating
system. The total lunar moment of inertia IT, which is the sum
of the moment of inertia of the mantle Im and the moment of
inertia of the core Ic, is proportional to the mass mM times the
square of the radius RM. Because the fractional uncertainty in
the constant of gravitation G is much larger than that for the
lunar mass parameter GmM, Equation (42) is evaluated in the
integration with both sides multiplied by G.
The components of vectors can be given in the inertial frame,

mantle frame, or other frames. Since the moment of inertia
matrices are nearly diagonal in the mantle frame, there is great
convenience to inverting matrices and performing the matrix
multiplications in the mantle frame. The resulting vector
components can then be rotated to other frames if desired.
The moment of inertia of the mantle varies with time due to

tidal distortions. The distortions are functions of the lunar
position and rotational velocities computed at time t− τm,
where τm is a time lag determined from the fits to the LLR data.
The time delay allows for dissipation when flexing the Moon.
The time derivative of the angular velocity of the mantle is
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given by
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where Im is the lunar mantle moment of inertia matrix,
NM,figM−pmj is the torque on the lunar mantle due to the point-
mass body j, NM,figM−figE is the torque on the lunar mantle due
to the interaction between the extended figure of the Moon and
the extended figure of Earth, νgp is the angular rate due to
geodetic precession, and Ncmb is the torque due to the
interaction between lunar mantle and core. The geodetic
precession rate is defined as
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where L is the rotation matrix from the mean J2000 frame to
the lunar body fixed (i.e., selenographic) frame, vEM is the
inertial Earth-to-Moon velocity vector, rEM is the inertial Earth-
to-Moon position vector, and rSM is the inertial Sun-to-Moon
position vector.

The fluid core is assumed to be rotating like a solid and
constrained by the shape of the core–mantle boundary at the
interior of the mantle, with the moment of inertia constant in
the frame of the mantle. The time derivative of the angular
velocity of the core expressed in the mantle frame is given by

w w n w= - - ´ --I I N , 45c c
1

m gp c c cmb[ ( ) ] ( )

where Ic is the lunar core moment of inertia matrix.

4.2. Lunar Moments of Inertia

In the mantle frame, the undistorted moment of inertia of the
mantle and the moment of inertia of the core are diagonal. The
undistorted total moment of inertia IT is given by
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where mM is the mass of the Moon, RM is the reference radius
of the Moon, J M2,˜ is the second-degree zonal harmonic of the
undistorted Moon, and βL and γL are ratios of the undistorted
moments of inertia given by

b =
-C A

B
, 50L

T T
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-B A

C
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T T
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The undistorted total moment of inertia and the second-degree
zonal harmonic of the undistorted Moon are not the same as the
mean values since the tidal distortions have non-zero averages.
We assume that the lunar rotation aligns an oblate core–

mantle boundary with the equator. Then the moment of inertia
of the core Ic is given by
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where αc= Cc/CT is the ratio of the core polar moment of
inertia to the undistorted total polar moment of inertia and fc is
the core oblateness. Distortion of the core moment of inertia is
not considered.
The undistorted moment of inertia of the mantle is the

difference between the undistorted total moment of inertia and
the core moment of inertia:

= -I I I . 53m T c ( ) 

The moment of inertia of the mantle varies with time due to
tidal distortion by Earth and spin distortion,
where the position vector of Earth relative to Moon, r, and the
angular velocity of the mantle, ωm, are evaluated at time
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t− τm; k2,M is the lunar potential Love number; mE is the mass
of Earth; RM is the reference radius of the Moon; r is the Earth–
Moon distance; x, y, and z are the components of the position of
Earth relative to the Moon referred to the mantle frame; ωm,x,

ωm,y, ωm,z are the components of ωm in the mantle frame; and n
is the lunar mean motion.
The rate of change of the mantleʼs moment of inertia is

given by

Table 3
Observational Data for the Moon and Inner Planets

Body Classification Type Observatory/Spacecraft Span Number

Moon
LLR Range McDonald 2.7 m 1970–1986 3440

MLRS/saddle 1985–1989 275
MRLS/Mt Fowlkes 1988–2014 2870
Haleakala 1984–1991 694
Observatoire de la Cotê d’Azur 1984–2020 16425
Matera 2003–2020 248
Apache Point 2006–2017 2452

Mercury
Spacecraft Range Mariner 10 1974–1975 2

MESSENGER 2011–2016 1353
Spacecraft 3D MESSENGER 2008–2010 3

Venus
Spacecraft Range Venus Express 2006–2014 2158
Spacecraft 3D Cassini 1998–2000 2
Spacecraft VLBI MAGELLAN 1990–1995 18

Venus Express 2007–2015 64
Mars

Spacecraft Range Viking Lander 1 1976–1983 1174
Viking Lander 2 1976–1978 80
Mars Pathfinder 1997 90
Mars Express 2005–2020 8751
Mars Global Surveyor 1999–2007 2130
Mars Odyssey 2002–2020 10087
Mars Reconnaissance Orbiter 2006–2020 2634

Spacecraft VLBI Mars Global Surveyor 2001–2004 15
Mars Odyssey 2002–2020 169
Mars Reconnaissance Orbiter 2006–2020 123

Spacecraft VLBA Various 2008–2014 9
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4.3. Lunar Torques

The torque on the Moon due to an external point-mass A is
given by

= ´- -N r aM , 56M A AM M AM,fig pm M M,fig pm ( )

where rAM is the position of the point mass relative to the Moon
and aM,figM−pmA is the acceleration of the Moon due to the
interaction of the extended figure of the Moon with the point-
mass A, as described in Section 3.2. Torques are computed for
the figure of the Moon interacting with Earth, the Sun,
Mercury, Venus, Mars, Jupiter, and Saturn.

It can be shown that torques due to the interaction of the
figure of the Moon with the figure of Earth are important for the
orientation of the Moon (Eckhardt 1981). The three most
significant terms of the torque are
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where pE is the direction vector of Earthʼs pole and rEM is the
direction vector of Earth from the Moon, IM is the lunar
moment of inertia tensor, RE is the reference radius of Earth,
and jM,E is defined by j = r psin M,E EM E·  .

The torque on the mantle due to the interaction between the
core and mantle is evaluated in the mantle frame and is given
by

w w w w= - + - ´N z zk C A , 58v c m c c m m m ccmb ( ) ( )( · )( ) ( ) 

where zm is a unit vector in the mantle frame aligned with the
polar axis. Parameter kv is for the viscous interaction at the
core–mantle boundary. The torque on the core is the negative
of the torque on the mantle.

5. Observational Data Used for Computing DE440 and
DE441

The observations that have been used to compute DE440 and
DE441 are summarized in Tables 3–5 for each body.

An LLR observation measures the round-trip light time from
an LLR station on Earth to a retroreflector on the Moon. There
are five retroreflectors on the Moon: the Apollo 11, 14, and 15
landing sites and the Lunokhod 2 and 1 rovers. The LLR
measurements started in 1970 following the first landings of
astronauts and continue to the present. The LLR residuals can
be expressed as one-way range residuals, i.e., one-way residual
= -t t c

2
measured computed( )

. The LLR measurement accuracy has
improved with time as technology for producing short-duration
high-energy laser pulses and timing measurements has
advanced.

Spacecraft measurements are based on the Deep Space
Network (DSN) radio range, Doppler, and VLBI measure-
ments. For spacecraft in orbit about the planet, the Doppler
measurements are typically used to estimate the position of the
spacecraft with respect to the planetʼs center of mass and then
range and VLBI measurements are used to estimate the orbit of
the planet. For spacecraft flying by a planet, the range, Doppler,

and VLBI data, as available, are used to estimate both the
trajectory of the spacecraft and a 3D position of the planet,
given as range, R.A., and decl.
Range measurements to spacecraft are usually made at

regular intervals during a tracking pass, typically every 10
minutes, while Doppler measurements are made more fre-
quently, typically every minute. Both range and Doppler
measurements are based on the measurement of the phase of a
radio signal, with the carrier signal used for Doppler and a
ranging modulation signal used for range. Since the carrier
signal is at a much higher frequency and usually has much
higher signal strength, Doppler measurements change in range
much more accurately than the range measurements. Because
of the shorter wavelength associated with the higher frequency,
the integer number of carrier wavelengths cannot be resolved,
so Doppler measurements do not allow for an estimation of
absolute range. Range measurements are more accurate
measurements of round-trip light time. For plotting residuals,
one-way residuals are used, which are essentially the same as
the LLR residuals, i.e., one-way range = -t t c

2
measured computed( )

. The
range measurement accuracy is often limited by a calibration of
the signal path delay in the tracking station prior to each
tracking pass. Since this calibration error is common to all
range measurements in the tracking pass, there is only one

Table 4
Observational Data for Jupiter, Saturn, and Uranus

Body Classification Type
Observatory/
Spacecraft Span Number

Jupiter
Spacecraft Range Juno 2016–2020 15
Spacecraft 3D Pioneer 10 1973 1

Pioneer 11 1974 1
Voyager 1 1979 1
Voyager 2 1979 1
Ulysses 1992 1
Cassini 2000 1
New
Horizons

2007 1

Spacecraft VLBA Juno 2016–2019 6
Spacecraft VLBI Galileo 1996–1998 22

Saturn
Spacecraft Range Cassini 2004–2018 147
Spacecraft VLBA Cassini 2004–2018 27
Spacecraft 3D Voyager 1 1980 1

Voyager 2 1981 1
Astrometric CCD Flagstaff 1998–2016 3152

Table
Mountain

2001–2010 687

Nikolaev 1973–1998 588
Astrometric Relative Yerkes 1910–1922 18

Uranus
Spacecraft 3D Voyager 2 1986 1
Astrometric CCD Flagstaff 1995–2016 2362

Table
Mountain

1998–2010 324

Nikolaev 1961–1999 215
Yunnan 2014–2017 3332

Astrometric Relative Yerkes 1908–1923 21
Astrometric Transit Bordeaux 1985–1993 165

La Palma 1984–1997 1030
Tokyo 1986–1989 44
Washington 1926–1993 1783
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statistically independent range point per pass. Therefore, only
one range point per tracking pass was used in the data
reduction, and the number of range measurements per space-
craft in Tables 3–5 reflect this.

Spacecraft VLBI measurements are usually made using two
widely separated tracking stations. The measurements are made
using a modulation on the carrier signal (delta-differential one-
way range) and give one component of the direction to the

Figure 4. Residuals of LLR ranges against DE440. The rms residual of the LLR ranges is about 20 cm for the early data and is about 1.3 cm for the recent data.

Figure 5. Residuals of the MESSENGER range data against DE440. The rms residual of the MESSENGER ranges is about 0.7 m.

Figure 6. Residuals of the Venus Express range data against DE440. The rms residual of the Venus Express ranges is about 8 m.

Table 5
Observational Data for Neptune and Pluto

Body Classification Type Observatory/Spacecraft Span Number

Neptune
Spacecraft 3D Voyager 2 1989 1
Astrometric CCD Flagstaff 1995–2015 2469

Table Mountain 1998–2013 416
Nikolaev 1961–1999 218
Yunnan 2014–2017 755

Astrometric Relative Yerkes 1904–1923 27
Astrometric Transit Bordeaux 1985–1993 183

La Palma 1984–1998 1106
Washington 1926–1993 1537

Pluto
Astrometric Occultation Various 1988–2017 23
Astrometric CCD Flagstaff 1995–2015 1098

Table Mountain 2001–2015 549
Pico dos Dias 1995–2012 5489

Astrometric Photographic Pulkovo 1930–1992 53
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spacecraft (Thornton & Border 2003). The angular component
direction depends on the baseline used. The baseline from
Goldstone, California to Madrid, Spain is nearly parallel to
Earthʼs equator, so measurements on that baseline measure an
angular component that is close to the R.A.. The baseline from
Goldstone, California to Canberra, Australia has an angle of
about 45 degrees relative to the equator, thus, it measures an
angular component that is approximately mid-way between
the R.A. and decl. directions. Residuals for single-baseline
measurements are given for each baseline. For Cassini and
Juno (and a few points for Mars orbiters), VLBA was used,
where the difference in the time of arrival of the spacecraft
carrier signal was used to determine both components of the
direction to the spacecraft.

Astrometric measurements record the direction to the planet,
namely, R.A. and decl., based on imaging relative to a star
field. The accuracy of the star catalog is often the largest source
of measurement error. The CCD type indicates more modern
observations using electronic detectors, generally referred to
star catalogs based on the Hipparcos mission launched in 1991
that are referred to the ICRF2 through the estimation of the
positions of radio stars using VLBI. Older measurements were
taken using photographic plates or transit methods, often
referred to older star catalogs, though corrected to the
Hipparcos catalog in some fashion. Barnard measured the
angular separation between the outer planets and some of their
satellites relative to angularly nearby stars at Yerkes Observa-
tory. The positions of those stars are taken from modern star

Figure 8. Residuals of Mars orbiter VLBI data against DE440, showing the Goldstone–Madrid baseline (top) and the Goldstone–Canberra baseline (bottom). The rms
residual of the Goldstone–Madrid baseline is about 0.25 mas and the rms residual of the Goldstone–Canberra baseline is about 0.18 mas.

Figure 9. Residuals of the Juno range data against DE440. The rms residual of the Juno ranges is about 13 m.

Figure 7. Residuals of the Mars orbiter range data against DE440. The rms residual of the MEX ranges is about 2 m and the rms residuals of the MGS, ODY, and
MRO ranges are about 0.7 m.
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catalogs, with accuracies limited by the knowledge of stellar
proper motion. Transit observations cover a longer time span
than the more modern spacecraft and astrometric measure-
ments. Since the measurement noise is relatively large for the
transit measurements, they do not contribute significantly to the
ephemeris solution. The transit measurements are included
mainly for historical comparison.

Occultation measurements of Pluto are included here, where
the R.A. and decl. are determined from the timed disappearance
and reappearance of a star occulted by Pluto (Desmars
et al. 2019).

5.1. Residuals

The orbit of the Moon is determined from the LLR data, and
Figure 4 shows the one-way residuals of the LLR data over
about 50 years. In the last few years, data were available from
the Observatoire de la Côte d’Azur, Apache Point, Matera, and
Wettzell sites. The rms residual of the early LLR data
(∼1970–1980) is about 20 cm while the rms residual of the
recent LLR data is about 1.3 cm.

The orbit of Mercury is mainly determined from the
MESSENGER radio range data, and Figure 5 shows the one-
way range residuals over about 4 years. The rms residual of the
MESSENGER ranges is about 0.7 m.

The orbit of Venus is mainly determined from the Venus
Express radio range data, and Figure 6 shows the one-way
range residuals over about 6.5 years. The rms residual of the
Venus Express ranges is about 8 m.

The shape of Mars’ orbit is mainly constrained by the radio
range data of Mars orbiters, and Figure 7 shows the one-way
range residuals of Mars Express (MEX), Mars Global Surveyor
(MGS), Mars Odyssey (ODY), and Mars Reconnaissance
Orbiter (MRO). The rms residual of the MEX ranges is about
2 m and the rms residuals of the MGS, ODY, and MRO ranges

are about 0.7 m. The orientation of Mars’ orbit is mainly
constrained by VLBI measurements of the Mars orbiters, and
Figure 8 shows the VLBI residuals of the Goldstone–Madrid
and Goldstone–Canberra baselines. The rms residual of the
Goldstone–Madrid baseline is about 0.25 mas and the rms
residual of the Goldstone–Canberra baseline is about 0.18 mas.
The shape of Jupiterʼs orbit is mainly constrained by the

Juno radio range data, and Figure 9 shows the one-way range
residuals over about 4 years. The rms residual of the Juno
ranges is about 13 m. The orientation of Jupiterʼs orbit is
mainly constrained by the VLBA data of the Juno spacecraft,
and Figure 10 shows the Juno VLBA residuals over about
2 years. The rms residual of the Juno VLBA data in R.A. is
about 0.4 mas and the rms residual of the Juno VLBA data in
decl. is about 0.6 mas.
The shape of Saturnʼs orbit is mainly constrained by the

Cassini radio range data, and Figure 11 shows the one-way
range residuals over about 13 years. The rms residual of the
Cassini ranges is about 3 m. The orientation of Saturnʼs orbit is
mainly constrained by the VLBA data of the Cassini spacecraft,
and Figure 12 shows the Cassini VLBA residuals over about
13 years. The rms residual of the Cassini VLBA data in R.A. is
about 0.6 mas and the rms residual of the Cassini VLBA data in
decl. is about 0.8 mas if the two obvious outliers are included,
and 0.35 and 0.36 mas if they are excluded.
The orbits of Uranus and Neptune are mainly constrained by

astrometry and radio range measurements to the Voyager
flybys and they are statistically consistent with DE430 (see
Folkner et al. 2014).
The orbit of Pluto is mainly determined by astrometry, and

Figure 13 shows the residuals of the stellar occultation
measurements from Desmars et al. (2019). The rms residuals
of the stellar occultations are about 8 mas in R.A. and about
11 mas in decl.

Figure 10. Residuals of the Juno VLBA data against DE440. The rms residual of the Juno VLBA data in R.A. is about 0.4 mas and the rms residual of the Juno VLBA
data in decl. is about 0.6 mas.

Figure 11. Residuals of the Cassini range data against DE440. The rms residual of the Cassini ranges is about 3 m.
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6. Conclusions

This paper presents JPLʼs new general-purpose ephemerides
DE440 and DE441 created by fitting numerically integrated
orbits to ground-based and space-based observations. Com-
pared to DE430, the previous general-purpose ephemerides
released in 2014, new data spanning over about 7 years have
been added to compute DE440. The shapes of the orbits of
Mercury, Venus, and Mars are constrained mainly by the radio
range data of the MESSENGER, Venus Express, and Mars-
orbiting spacecraft, respectively. The orientations of inner
planet orbits are tied through the ICRF via VLBI of Mars-
orbiting spacecraft. The orbit of the Moon is primarily
determined by laser ranging to lunar retroreflectors with the
data arc extended through 2020 March. The orbit accuracy of
Jupiter has improved substantially by fitting the orbit to the
new Juno radio ranges and VLBA data. The orbit of Saturn is
determined by radio ranges and VLBA data of the Cassini
spacecraft, with improved calibration of the radio range data.
The orbits of Uranus and Neptune are constrained by
astrometry and radio range measurements to the Voyager
flybys. The orbit of Pluto is constrained by stellar occultation
data reduced against the Gaia star catalog. DE440 spans years
1550–2650 and DE441 spans years −13,200 to +17,191. The
ephemerides of DE440 are recommended for analyzing modern
data while DE441 is recommended for analyzing historic data
before the DE440 time span.
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