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Introduction

This document contains a brief description of the most often used SPICELIB routines. These are
routines for reading SPICE files, solving tasks of 2-D and 3-D geometry and dealing with time
conversions.

In this document routines are grouped by category. A list of these categories and actions performed by
the particular routines is in the first chapter.

For each routine in this document you will find the following information:
1. a short description of action performed by routine;
2. calling sequence;
3. declaration of the routine’s arguments.

Full information for each routine can be found in the header section of the routine’s source code.

Units for arguments of SPICELIB routines described here are kilometers for distances and radians for
angles.

Usage as CSPICE reference

Although this document describes interfaces of the FORTRAN-language version of the SPICE Toolkit
(SPICELIB), it can also be used as a reference to the functionality provided in the C-language version of
the SPICE Toolkit (CSPICE) and IDL version of the SPICE Toolkit (ICY). Each of the SPICELIB
subroutines mentioned in this reference has an equivalent CSPICE function with the same name but
with “_c” appended at the end and ICY function with the same name but “cspice_” appended at the
beginning.
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Access to navigation and ancillary data.

Solar system bodies ID codes. page 7
• list of SPICE ID codes for solar system bodies.

Spacecraft and instruments ID codes. page 8
• list of SPICE ID codes for spacecraft and instruments;
• using text kernel files for defining new ID code-name mappings.

Inertial reference frames. page 9
• list of codes and names for inertial reference frames;
• list of names for body–fixed rotation frame;
• other frames used within the SPICE system.

Unloading and loading SPICE kernel files. page 10
• loading of a kernel file or a set of kernel files;
• unloading of a kernel file or a set of kernel files.

Universal and ephemeris times. page 11
• loading of an LSK file containing ET–UTC mapping data;
• calculation of ephemeris time ET from universal time UTC;
• calculation of universal time UTC from ephemeris time ET.

Spacecraft on-board time (SCLK). page 12
• loading of an SCLK file containing ET–SCLK mapping data;
• transformation of SCLK given as character string to its double precision encoding;
• transformation of encoded double precision SCLK to corresponding character string;
• calculation of encoded SCLK for a given ephemeris time ET;
• calculation of ephemeris time ET for SCLK given as a double precision encoding;
• calculation of character string SCLK for a given ephemeris time ET;
• calculation of ephemeris time for SCLK given as a character string.

Constants and matrixes of planets and satellites (PCK). page 13
• loading of a PCK file containing physical constants for planets and satellites;
• calculation of transformation matrix from inertial to body-fixed reference frame;
• calculation of transformation matrix from inertial “J2000” to body-fixed reference frame;
• calculation of Euler angles defining transformation from inertial “J2000” to body-fixed

reference frame;
• retrieval of the values of body’s physical parameters from previously loaded data.

Frame transformations (FRAMES). page 14
• loading of a FRAMES kernel file containing project specific frame definitions;
• calculation of state transformation matrix, rotating state vectors (position and velocity) from one

frame to another;
• calculation of position transformation matrix, rotating position vectors from one frame to

another;
• naming convention for inertial and PCK-based frames;
• naming convention for user-defined (CK-based and fixed offset) frames;

Planet and spacecraft positions (SPK). page 15
• loading of an SPK file containing solar system bodies and spacecraft trajectory data;
• calculation of apparent, true or geometric state (position and velocity) of one body (planet,

satellite, spacecraft, ...) with respect to another body for a given ephemeris time ET;
• calculation of apparent, true or geometric position of one body (planet, satellite, spacecraft, ...)

with respect to another body for a given ephemeris time ET;
• unloading of a previously loaded SPK file.

Attitude of spacecraft and instrument platforms (CK). page 16
• loading of a CK file containing spacecraft attitude data;
• calculation of state or posititon transformation matrix, rotating state or posititon vectors from

one frame to another, either of which can be a CK-based frame;
• calculation of the attitude matrix or the attitude matrix and angular velocity of rotation of

spacecraft reference frame relative to a given inertial frame for a given encoded SCLK;
• unloading of a previously loaded CK file.
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Scientific instruments parameters (IK). page 17
• loading of an IK file containing data describing a scientific instrument;
• retrieval of the values of instrument parameters from previously loaded data;
• retrieval of the instrument field-of-view parameters from previously loaded data;
• IK naming convention for instrument parameters;
• specification of a set of IK keywords used to hold instrument field-of-view definition.

Spacecraft Event Information (Data Base Kernel). page 18
• loading a SPICE EK (DBK) file containing spacecraft event data;
• searching EK data satisfying a set of constraints specified in a query string;
• returning integer, double precision or character elements of an EK data record found during a

search;

Physical and mathematical constants. page 20
• values of p, p/2 and 2p;
• numbers of degrees per radian and radians per degree;
• number of seconds per day;
• IAU official value of light speed in vacuum;
• values of Julian date for B1900, B1950, J1900, J1950, J2000 and J2100.

3-dimensional geometry

Rectangular coordinates. page 21
• cylindrical coordinates of a point from its rectangular coordinates;
• geodetic coordinates of a point from its rectangular coordinates;
• latitudinal coordinates of a point from its rectangular coordinates;
• right ascension, declination and distance to origin of a point from its rectangular coordinates;
• spherical coordinates of a point from its rectangular coordinates.

Spherical and cylindrical coordinates. page 22
• latitudinal coordinates of a point from its cylindrical coordinates;
• rectangular coordinates of a point from its cylindrical coordinates;
• spherical coordinates of a point from its cylindrical coordinates;
• cylindrical coordinates of a point from its spherical coordinates;
• latitudinal coordinates of a point from its spherical coordinates;
• rectangular coordinates of a point from its spherical coordinates.

Latitudinal and geodetic coordinates. page 23
• cylindrical coordinates of a point from its latitudinal coordinates;
• rectangular coordinates of a point from its latitudinal coordinates;
• spherical coordinates of a point from its latitudinal coordinates;
• rectangular coordinates of a point from its geodetic coordinates;
• rectangular coordinates of a point on the surface of body from its geodetic latitude and

longitude;
• rectangular coordinates of a point from its right ascension, declination and distance to origin.

Simple operations on vectors. page 24
• addition, subtraction, cross product and dot product of two vectors;
• product of vector and scalar;
• negation of given vector;
• copying of given vector;
• indication if a given vector is the zero vector;
• angular separation between two vectors;
• distance between two vectors;
• magnitude of vector;
• unit vector along with given vector;
• unit vector along with cross product of two vectors;
• magnitude and unit vector along with given vector.

Projections, linear combinations and rotation of vectors. page 25
• vector’s component rectangular to another vector;
• projection of vector into another vector;
• rotation of vector by given angle about axis given by another vector;
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• rotation of vector by given angles about reference axis X, Y or Z;
• point on a line nearest to a given point;
• orthogonal projection of a vector onto a given plane;
• inverted vector projection onto a plane;
• linear combination of two vectors;
• linear combination of three vectors.

Operations on matrixes. page 26
• product of two matrixes;
• product of a matrix and the transpose of another matrix;
• product of a matrix and a vector;
• product of the transpose of a matrix and another matrix;
• product of the transpose of a matrix and a vector;
• product of the transpose of a vector, a matrix and another vector;
• transpose, determinant and trace of a matrix;
• copying of a matrix;

Operations on planes. page 27
• plane from normal vector and distance from origin;
• plane from point and normal vector;
• plane from point and two vectors;
• normal vector and distance from origin for given plane;
• point and normal vector for given plane;
• point and two vectors for given plane;
• intersection of ray and plane.

Operations on ellipses. page 28
• ellipse from center and two generating vectors;
• center and axis for given ellipse;
• axis of ellipse from two generating vectors;
• intersection of ellipse and plane;
• point on given ellipse and nearest to given point;
• projection of ellipse onto plane.

Operations on ellipsoids. page 29
• point on a given ellipsoid nearest to a given point;
• intersection of a ray and an ellipsoid;
• normal vector for a given point on ellipsoid surface;
• limb of ellipsoid surface;
• point on a given ellipsoid nearest to a given line;
• intersection of ellipsoid and plane.

Creation of transformation matrixes. page 30
• calculation of matrix rotating a vector about a specified reference axis (X, Y or Z);
• rotation of a matrix about a specified reference axis (X, Y or Z);
• calculation of matrix rotating vectors to a reference frame, the principal axes of which are

specified by two given vectors;
• indication if a given matrix is rotation matrix;
• calculation of a matrix from Euler angles;
• calculation of Euler angles from a matrix.

Orbital elements. page 31
• calculation of spacecraft position and velocity for given time and set of orbital elements;
• calculation of orbital elements for given position and velocity of spacecraft and gravitational

parameter of planet.

Observation Geometry – Sub-observer Point and Illumination Angles. page 32
• calculation of sub-observer point on the surface of a body;
• calculation of illumination angles at a given point on the surface of a body.

Observation Geometry – Surface Intercept Point. page 33
• calculation of the intercept point on the surface of a target by a direction from an observer;
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Solar system body names and NAIF ID codes.

Planet Barycenters

Positive IDs from 0 to 10 are assigned to planet barycenters, solar system barycenter and Sun.
0 Solar system barycenter
1 Mercury barycenter
2 Venus barycenter
3 Earth barycenter
4 Mars barycenter
5 Jupiter barycenter
6 Saturn barycenter
7 Uranus barycenter
8 Neptune barycenter
9 Pluto barycenter
10 Sun

Planet Mass Centers

The code for each planet center of mass is computed by adding 99 to the code of the planet's barycenter
multiplied by 100.

199 Mercury (equivalent to 1)
299 Venus (equivalent to 2)
399 Earth
499 Mars (equivalent to 4)
599 Jupiter
699 Saturn
799 Uranus
899 Neptune
999 Pluto

Satellites

The code for a satellite is computed by adding its IAU designation to the code of its planet barycenter
multiplied by 100.

301 Moon

401 Phobos
402 Deimos

501 Io
502 Europe
503 Ganimede
etc. etc.
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Spacecraft and instrument names and NAIF ID codes.

Spacecraft’s, scientific instruments

Negative codes are used for spacecraft. So,  “MGS” has ID -94, “Galileo orbiter” ID is -77, “Stardust”
ID is -29, “Cassini” ID is -82, etc. The ID for a particular spacecraft is assigned by NAIF/JPL. These
are based on NASA DSN designations. See the document NAIF IDs Required Reading for a complete
list.

The code of a scientific instrument or instrument platform is normally computed by adding its ID code
assigned by project staff to the code of the spacecraft multiplied by 1000. For example, the code of the
first instrument platform of the spacecraft with ID -23 would be -23001.

Built-in and User Defined names/IDs

Although ID-name mapping for many past and current spacecraft is built into the system, the SPICE
toolkit provides a mechanism that allows defining additional ID-name mappings. This is done by
specifying ID-name pairs in a text file, following the text kernel file format, using the keywords
NAIF_BODY_CODE and NAIF_BODY_NAME:

   \begindata
      NAIF_BODY_CODE += ( id_1 )
      NAIF_BODY_CODE += ( ’name_1’ )

      NAIF_BODY_CODE += ( id_2 )
      NAIF_BODY_CODE += ( ’name_2’ )
   ...
   \begintext

When a file defining ID-name pairs is loaded into a SPICE-based application, this mapping becomes
available to all SPICE routines. Note that using the ’+=’ assignment is required in order to “append”
new pairs to those, which are already loaded.

ID-name mappings for a particular project are usually stored in the Frames Kernel (FK) or Instrument
Kernels (IKs) for that spacecraft but could be provided in any SPICE text kernel. Sometimes a “mission
kernel” is used to provide ID-name mappings as well as other information used in SPICE-based
applications. For example, this fragment from FIDO rover FK file defines FIDO rover and its
instrument ID-name mapping:

   \begindata

      NAIF_BODY_NAME += ( ’FIDO_ROVER'              )
      NAIF_BODY_CODE += ( -771000                   )

      NAIF_BODY_NAME += ( ’FIDO_FRONT_HAZCAM_LEFT’  )
      NAIF_BODY_CODE += ( -771011                   )

      NAIF_BODY_NAME += ( ’FIDO_FRONT_HAZCAM_RIGHT’ )
      NAIF_BODY_CODE += ( -771012                   )

      NAIF_BODY_NAME += ( ’FIDO_REAR_HAZCAM_LEFT’   )
      NAIF_BODY_CODE += ( -771021                   )
   ...
   \begintext
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Inertial Reference Frames

Codes and names of standard inertial reference frames.

The names and integer codes of standard inertial reference frames supported by the SPICE Toolkit are
given in the table below. They are used as arguments in some SPICELIB routines.

Code Name Description
1 J2000 Earth mean equator, dynamical equinox of J2000
2 B1950 Earth mean equator, dynamical equinox of B1950
3 FK4 Fundamental Catalog (4)
4 DE-118 JPL Developmental Ephemeris (118)
5 DE-96 JPL Developmental Ephemeris ( 96)
6 DE-102 JPL Developmental Ephemeris (102)
7 DE-108 JPL Developmental Ephemeris (108)
8 DE-111 JPL Developmental Ephemeris (111)
9 DE-114 JPL Developmental Ephemeris (114)
10 DE-122 JPL Developmental Ephemeris (122)
11 DE-125 JPL Developmental Ephemeris (125)
12 DE-130 JPL Developmental Ephemeris (130)
13 GALACTIC Galactic System II
14 DE-200 JPL Developmental Ephemeris (200)
15 DE-202 JPL Developmental Ephemeris (202)
16 MARSIAU Mars Mean Equator and IAU vector of J2000
17 ECLIPJ200

0
Ecliptic coordinates based upon the J2000 frame

18 ECLIPB195
0

Ecliptic coordinates based upon the B1950 frame

19 DE-140 JPL Developmental Ephemeris (140)
20 DE-142 JPL Developmental Ephemeris (142)
21 DE-143 JPL Developmental Ephemeris (143)
22 DE-145 JPL Developmental Ephemeris (145)

All DE-2XX and DE-4XX frames are, by definition, J2000 frames, unique identifiers for these are not
needed.

Names of body-fixed rotating frames.

Body-fixed rotating frames for all solar system bodies are defined within the SPICE system. The name
of such a frame for a particular body is constructed by adding the prefix ’IAU_’ to the body name. For
example, the name of the Mars body-fixed rotating frame is ’IAU_MARS’.

Other frames used within SPICE system.

Other types of frames for spacecraft, instrument platforms and instruments can be defined using the
SPICE system “frames” mechanism. See Toolkit document “Frames Required Reading”.
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Loading and Unloading SPICE Kernels

Routines

FURNSH loads a single SPICE kernel file FNAME or multiple SPICE kernels provided in a list in a text kernel file
FNAME.

SUBROUTINE FURNSH( FNAME )
CHARACTER*(*)     FNAME

UNLOAD unloads a single SPICE kernel file FNAME or multiple SPICE kernels provided in a list in a text kernel
file FNAME.

SUBROUTINE UNLOAD( FNAME )
CHARACTER*(*)     UTC

Kernel List File Format

The FURNSH routine provides a mechanism for loading multiple kernels with a single call. In order to
do that, the kernel files to be loaded must be listed in the value field of the KERNELS_TO_LOAD
keyword in a file that follows the text kernel file format. Then, the name such a meta-kernel file should
be provided as input to FURNSH.

   \begindata
      KERNELS_TO_LOAD = (
                         ’kernel_file_name’
                         ’kernel_file_name’
                         ’kernel_file_name’
                         )
   \begintext

Example

The first code fragment individually loads the LSK file ’/kernels/gen/lsk/naif0007.tls’
and the SCLK file ’/kernels/mgs/sclk/mgs.tsc’ needed to perform MGS time conversions.

   LSKFN = ’/kernels/gen/lsk/naif0007.tls’
   SCLKFN = ’/kernels/mgs/sclk/mgs.tsc’
   CALL FURNSH( LSKFN )......
   CALL FURNSH( SCLKFN )......

The second code fragment loads multiple kernels listed in the meta-kernel file:

   \begindata
      KERNELS_TO_LOAD = (
                         ’/kernels/generic/lsk/naif0007.tls’
                         ’/kernels/generic/pck/pck00006.tpc’
                         ’/kernels/generic/spk/de405.bsp’
                         ’/kernels/mgs/sclk/mgs.tsc’
                         ’/kernels/mgs/fk/mgs.fk’
                         ’/kernels/mgs/spk/mgs_map1.bsp’
                         ’/kernels/mgs/ck/mgs_map1.bc’
                         )
   \begintext

with a single call to FURNSH routine:

   LISTFN = ’mgs_kernels.furnsh’
   CALL FURNSH( LISTFN )......

The third code fragment unloads the earlier loaded SPK file ’my_spk.bsp’ using UNLOAD:

   SPKFN = ’my_spk.bsp’
   CALL UNLOAD( SPKFN )......
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Universal and Ephemeris times

Routines

FURNSH loads LSK kernel file FNAME containing values of constants and leap seconds required for UTC – ET
correspondence calculation.

SUBROUTINE FURNSH( FNAME )
CHARACTER*(*)     FNAME

STR2ET given a STRING representing a time, calculates the corresponding ephemeris time ET.

SUBROUTINE STR2ET ( STRING, ET )
CHARACTER*(*)     STRING
DOUBLE PRECISION  ET

TIMOUT given an ephemeris time ET, calculates a time string STRING in a user-specified format and system.
The PICTUR parameter is a string that gives a "picture" of the time format.

SUBROUTINE TIMOUT ( ET, PICTUR, STRING )
DOUBLE PRECISION  ET
CHARACTER*(*)     PICTUR
CHARACTER*(*)     STRING

UTC2ET is an older, less flexible than STR2ET, routine which given a Universal Time UTC, calculates the
corresponding ephemeris time ET.

SUBROUTINE UTC2ET( UTC, ET )
CHARACTER*(*)     UTC
DOUBLE PRECISION  ET

ET2UTC is an older, less flexible than TIMOUT, routine which given an Ephemeris Time ET, calculates the
corresponding Universal Coordinated Time, UTC. The FORMAT parameter defines the format of UTC
(can be ’C’ for calendar, ’D’ for day of the year, ’J’ for Julian date UTC; ’ISOC’ for ISO calendar
format, ’ISOD’ for ISO day of year format). The PREC parameter defines number of digits after
decimal point in UTC seconds.

SUBROUTINE UTC2ET( ET, FORMAT, PREC, UTC )
DOUBLE PRECISION  ET
CHARACTER*(*)     FORMAT
INTEGER           PREC
CHARACTER*(*)     UTC

Example

This fragment of code loads an LSK file (usually it’s done once at the beginning of the program),
calculates ET for a given UTC, adds 2 hours and converts this ET back to UTC in ISO date format.

   CALL FURNSH( ’/kernels/generic/sclk/naif0007.tls" )
   ...
   CALL STR2ET ( ’1997 Jan 17 17:44:42.271’, ET )
   ET = ET + 7200
   CALL TIMOUT ( ET, ’YYYY-MM-DDTHR:MN:SC.###’, STRING )

UTC and ET formats

Universal Time UTC is a string and can appear in one of the following formats:

ISO format, for example
  1986-01-18T12:19:52.18
  1995-008T18:28:12

Calendar date, for example
  1986 JAN 9 03:12:59.22451
  Tue Aug 6 11:10:57  1996

Day of the year, for example
  1993-321/12:28:28.287
  1992 183// 12 18 19

Julian date, for example
  jd 28272.291
  2451515.2981 (JD)

Ephemeris Time ET is the number of ephemeris seconds past Julian date J2000 (JD = 2451545.0
corresponds to 12:00:00 January 1, 2000 TDB).
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Spacecraft On-board Time (SCLK)

Routines

FURNSH loads SCLK kernel file FNAME containing values required for SCLK string format interpretation and
SCLK-to-ephemeris time (ET) correspondence calculation.

SUBROUTINE FURNSH( FNAME )
CHARACTER*(*)     FNAME

SCENCD converts character representation of SCLK CLKSTR to its double precision encoding SCLKDP for the
spacecraft with integer code SC.

SCDECD makes opposite conversion.

SUBROUTINE SCENCD( SC, CLKSTR, SCLKDP )
SUBROUTINE SCDECD( SC, SCLKDP, CLKSTR )
INTEGER           SC
CHARACTER*(*)     CLKSTR
DOUBLE PRECISION  SCLKDP

SCE2C calculates for ephemeris time ET the corresponding double precision continuous encoding of SCLKDP
for the spacecraft with ID SC.

SCT2E makes opposite conversion.

SUBROUTINE SCE2C( SC, ET, SCLKDP )
SUBROUTINE SCT2E( SC, SCLKDP, ET )
INTEGER           SC
DOUBLE PRECISION  ET
DOUBLE PRECISION  SCLKDP

SCE2S calculates for ephemeris time ET the corresponding CLKSTR represented as a character string for the
spacecraft with integer code SC.

SCS2E makes opposite conversion.

SUBROUTINE SCE2S( SC, ET, CLKSTR )
SUBROUTINE SCS2E( SC, CLKSTR, ET )
INTEGER           SC
DOUBLE PRECISION  ET
CHARACTER*(*)     CLKSTR

Example

This fragment of code loads a SCLK file for spacecraft with ID -23 (it’s done once at the beginning of
the program), calculates for a given ET the corresponding double precision encoding of SCLK and
converts it to character representation.

   ...
   CALL FURNSH( ’/kernels/sc23/sclk/spcrft23.tsc’ )
   ...
   CALL SCE2C ( -23, ET, SCLKDP )
   CALL SCDECD( -23, SCLKDP, CLKSTR )

SCLK formats

String representation: SCLK is represented as string such as ’2/123.23.59.59.255’ consisting
of two parts. The first part ’2/’ is the partition number, the second part
’123.23.59.59.255’ is the SCLK time in this partition (the dots are the delimiters
separating days, hours, minutes, seconds, 1/256 of seconds). Different spacecraft have different
set of field. For example, MGS, Cassini and Stardust SCLKs have two fields – seconds and
1/256 of seconds, NEAR SCLK has one field – milliseconds, etc.

“Encoded” double precision representation: SCLK time is represented by a double precision number
containing the number of ticks that the on-board timer has counted from the beginning of the
mission. A tick is the shortest time increment expressible by this clock (for example for MGS it
is 1/256 of second).
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Constants and matrixes of planets and satellites (PCK).

Routines

FURNSH loads text PCK kernel file FNAME containing constants for Solar system bodies or binary PCK kernel
file FNAME containing orientation data for one or more solar system bodies.

SUBROUTINE FURNSH( FNAME )
CHARACTER*(*)      FNAME

PXFORM calculates the matrix XFORM used to rotate position vectors from inertial frame with name FROM to solar
system planet or satellite body-fixed frame with name TO at ephemeris time ET. The name of a planet of
satellite body-fixed frame, orientation for which is determined using rotation constants stored in a
generic text PcK file, is constructed by adding the prefix ’IAU_’ to the body name (for example, the
name of the Mars IAU body-fixed rotating frame is ’IAU_MARS’). The name of an Earth body-fixed
frame, orientation of which is determined using high-precision Earth rotation data provided in a binary
PCB file, is ’ITRF93’.

SUBROUTINE PXFORM ( FROM, TO, ET, XFORM )
CHARACTER*(*)     FROM
CHARACTER*(*)     TO
DOUBLE PRECISION  ET
DOUBLE PRECISION  XFORM ( 3, 3 )

SXFORM calculates the matrix XFORM used to rotate state vectors (position and velocity) from inertial frame with
name FROM to solar system planet or satellite body-fixed frame with name TO at ephemeris time ET.
The name of a planet of satellite body-fixed frame, orientation for which is determined using rotation
constants stored in a generic text PcK file, is constructed by adding the prefix ’IAU_’ to the body
name (for example, the name of the Mars IAU body-fixed rotating frame is ’IAU_MARS’). The name
of an Earth body-fixed frame, orientation of which is determined using high-precision Earth rotation
data provided in a binary PCB file, is ’ITRF93’.

SUBROUTINE SXFORM ( FROM, TO, ET, XFORM )
CHARACTER*(*)     FROM
CHARACTER*(*)     TO
DOUBLE PRECISION  ET
DOUBLE PRECISION  XFORM ( 6, 6 )

BODVRD returns the vector VALUES (and its dimension DIM) containing up to MAXN value(s) for the physical
parameter named ITEM for the body with name BODYNM. As an example, to retrieve the axes of the
ellipsoidal model of a planet ITEM is set to ’RADII’. To retrieve planet nutation precession angles, set
ITEM to ’NUT_PREC_ANGLES’, etc.

SUBROUTINE BODVRD( BODYNM, ITEM, MAXN, DIM, VALUES )
CHARACTER*(*)     BODYNM
CHARACTER*(*)     ITEM
INTEGER           MAXN
INTEGER           DIM
DOUBLE PRECISION  VALUES (*)

Example

This fragment of code loads a text PCK file, calculates the matrix, which rotates vectors from the
inertial frame ’B1950’ to the IAU body-fixed frame for Mars, and retrieves the lengths of the three
axes defining the Mars ellipsoid.

   CALL FURNSH( ’/kernels/generic/pck/pck00006.tpc’ )
   ...
   CALL PXFORM( ’B1950’, ’IAU_MARS’, ET, MARSMT )
   CALL BODVRD( ‘MARS’, ’RADII’, 3, DIM, MARSRD )
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Frame Transformations: Inertial, PCK-based and User-defined frames.

Routines

FURNSH loads Frame Definitions kernel file FNAME containing frames definitions for a particular spacecraft,
instrument or other structure of interest.

SUBROUTINE FURNSH( FNAME )
CHARACTER*(*)     FNAME

PXFORM calculates the matrix XFORM used to rotate position vectors from one frame with name FROM to another
frame with name TO at ephemeris time ET.

SUBROUTINE PXFORM ( FROM, TO, ET, XFORM )
CHARACTER*(*)     FROM
CHARACTER*(*)     TO
DOUBLE PRECISION  ET
DOUBLE PRECISION  XFORM ( 3, 3 )

SXFORM calculates the matrix XFORM used to rotate state vectors (position and velocity) from one frame with
name FROM to another frame with name TO at ephemeris time ET.

SUBROUTINE SXFORM ( FROM, TO, ET, XFORM )
CHARACTER*(*)     FROM
CHARACTER*(*)     TO
DOUBLE PRECISION  ET
DOUBLE PRECISION  XFORM ( 6, 6 )

Inertial and PCK-based frame naming convention

The inertial frame naming convention is described in the Inertial Reference Frames section of this
document. The second category of frames supported in SPICE is the PCK-based set of frames (IAU
body-fixed rotating frames). The naming convention for these frames is ’IAU_[BODY_NAME]’,
where ’[BODY_NAME]’ is the name of the body. For example, to refer to the Mars body-fixed rotating
frame use ’IAU_MARS’ in an SXFORM or PXFORM call

User-defined frame naming convention

Another category of frames supported in SPICE is user-defined frames which can be CK-based or fixed
offset. The SPICE system recognizes these frames only when a frames kernel file containing definitions
for such frames is loaded into the kernel pool. These frames can be given any name except those, which
belong to the standard SPICE inertial set, and any PCK-based frames already defined in the SPICE
system. To avoid possible interference when frames for multiple spacecraft and instruments are loaded
into SPICE simultaneously, NAIF recommends including the abbreviated spacecraft name and
instrument name in the prefix of any user-defined frame name. Refer to the frame kernel for a particular
mission for a complete list of user-defined frames for that mission.

Example

This fragment of code loads a meta-kernel file, which contains this KERNELS_TO_LOAD assignment:

   \begindata
      KERNELS_TO_LOAD = ( ’/kernels/mgs/frames/mgs.tf’,
                    ’/kernels/generic/lsk/naif0007.tls’,
                    ’/kernels/mgs/sclk/mgs.tsc’,
                    ’/kernels/mgs/ck/mgs_spice_c_kernel_1998-339.bc’,
                    ’/kernels/mgs/ck/mgs_solar_array_1998-339.bc’ )
   \begintext

pointing to MGS Frames kernel file, generic SPICE LSK file, MGS SCLK file and MGS spacecraft and
solar array orientation CK files and calculates the matrix which rotates vectors from the Mars body-
fixed rotating frame ’IAU_MARS’ to the MGS magnetometer (MAG) +Y sensor frame
’MGS_MAG_+Y_SENSOR’:
   CALL FURNSH( ’mgs_kernels.list’ )
   CALL PXFORM( ’IAU_MARS’, ’MGS_MAG_+Y_SENSOR’, ET, XMAT )
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Planet and Spacecraft positions (SPK).

Routines

FURNSH loads an SPK kernel file FNAME containing trajectory data for one or more ephemeris bodies (planet,
satellite, spacecraft, etc.) for some interval of time, and returns the file handle HANDLE for this file.

SUBROUTINE FURNSH( FNAME  )
CHARACTER*(*)     FNAME

SPKEZR calculates the state vector (position and velocity) STATE of one body (“target”) with respect to another
body (“observer”) at ephemeris time ET. Both bodies are specified by their names - TARGNM for
“target” and OBSNM for “observer”. The state vector is calculated in the requested reference frame with
name FRAME from the list of frames supported within the SPICE system. In accordance with the
correction parameter ABERR the state vector can be calculated as apparent (ABERR=’LT+S’ or
’CN+S’), true (’LT’ or ’CN’), or geometric (’NONE’). This routine also returns one-way light time
from “target” to “observer” LT.

SUBROUTINE SPKEZR( TARGNM, ET, FRAME, ABERR, OBSNM, STATE, LT )
CHARACTER*(*)     TARGNM
DOUBLE PRECISION  ET
CHARACTER*(*)     FRAME
CHARACTER*(*)     ABERR
CHARACTER*(*)     OBSNM
DOUBLE PRECISION  STATE (6)
DOUBLE PRECISION  LT

SPKPOS performs the same calculation as SPKEZR but returns the position vector instead of the state vector.

SUBROUTINE SPKPOS( TARGNM, ET, FRAME, ABERR, OBSNM, PTARG, LT )
CHARACTER*(*)     TARGNM
DOUBLE PRECISION  ET
CHARACTER*(*)     FRAME
CHARACTER*(*)     ABERR
CHARACTER*(*)     OBSNM
DOUBLE PRECISION  PTARG (3)
DOUBLE PRECISION  LT

UNLOAD unloads previously loaded SPK having file name FNAME.

SUBROUTINE UNLOAD( FNAME )
CHARACTER*(*)     FNAME

Example

This fragment of code loads two SPK files (the first contains ephemeris data for Solar system bodies,
the second contains trajectory data for the spacecraft with ID -23) having some time coverage in
common. It also loads a PCK file to provide data for transformation from inertial to the Mars body-fixed
rotating frame. Then it calculates geometric states of the Sun and spacecraft with respect to the Mars
center in the Mars body-fixed rotating frame “IAU_MARS”. The loading of SPK and PCK files is
normally done only once at the beginning of the program, while the computation of state vectors is
usually repeated for many instants of time. Note the spacecraft ID formatted as a string in the second
call to SPKEZR; this mechanism allows using a body ID in place of a name if an object name isn’t
recognized by SPICE toolkit.

   ...
   CALL FURNSH ( ’/kernels/generic/pck/pck00006.tpc’      )
   CALL FURNSH ( ’/kernels/generic/spk/de200.bsp’         )
   CALL FURNSH ( ’/kernels/sc23/spk/sc23_orbit142.bsp’    )
   ...
   CALL SPKEZR ( ’SUN’, ET, ’IAU_MARS’, ’NONE’, ’MARS’, SUNST,  LT )
   CALL SPKEZR ( ’-23’, ET, ’IAU_MARS’, ’NONE’, ’MARS’, SC23ST, LT )
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Attitude of spacecraft and instrument platforms (CK).

Routines

FURNSH loads a CK kernel file FNAME containing attitude data for one or more spacecraft or instrument
platforms and returns the integer file handle HANDLE for this file.

SUBROUTINE FURNSH( FNAME )
CHARACTER*(*)     FNAME

PXFORM calculates the matrix XFORM used to rotate position vectors from one frame with name FROM to another
frame with name TO, either of which can be a CK-based frame, at ephemeris time ET.

SUBROUTINE PXFORM ( FROM, TO, ET, XFORM )
CHARACTER*(*)     FROM
CHARACTER*(*)     TO
DOUBLE PRECISION  ET
DOUBLE PRECISION  XFORM ( 3, 3 )

SXFORM calculates the matrix XFORM used to rotate state vectors from one frame with name FROM to another
frame with name TO, either of which can be a CK-based frame, at ephemeris time ET.

SUBROUTINE SXFORM ( FROM, TO, ET, XFORM )
CHARACTER*(*)     FROM
CHARACTER*(*)     TO
DOUBLE PRECISION  ET
DOUBLE PRECISION  XFORM ( 6, 6 )

CKGPAV lower-level CK routine that calculates the transformation matrix CMAT and the angular velocity AV of
rotation of the platform-fixed reference frame with respect to the specified reference frame named REF
for the instrument platform having ID INS at the time SCLK that is the DP encoding of SCLK. If
pointing data in the loaded file is continuous, then the matrix and the angular velocity will be returned at
exactly the requested SCLK and SOUT will be equal to SCLK. If pointing data in the loaded file is
discrete then the matrix and the angular velocity will be calculated for the time that is closest to the
requested SCLK and belongs in the interval ±TOL from it. This time will be returned in SCLKOUT. The
flag FND will be .TRUE. if it was possible to calculate CMAT and AV, otherwise it will be .FALSE.

CKGP similar to CKGPAV but calculates only the transformation matrix CMAT.

SUBROUTINE CKGPAV( INS, SCLK, TOL, REF, CMAT, AV, SOUT, FND )
SUBROUTINE CKGP ( INS, SCLK, TOL, REF, CMAT,     SOUT, FND )
INTEGER           INS
DOUBLE PRECISION  SCLK
DOUBLE PRECISION  TOL
CHARACTER*(*)     REF
DOUBLE PRECISION  CMAT (3,3)
DOUBLE PRECISION  AV   (3)
DOUBLE PRECISION  SOUT
BOOLEAN           FND

UNLOAD unloads the previously loaded CK having file name FNAME.

SUBROUTINE UNLOAD( FNAME )
CHARACTER*(*)     FNAME

Example

This fragment of code loads a CK file containing pointing data for the MGS spacecraft, calculates a
transformation matrix used to rotate vectors from the inertial frame ’J2000’ to the MGS spacecraft
frame ’MGS_SPACECRAFT’, and performs this rotation on the vector X.

   CALL FURNSH( ’/kernels/mgs/ck/mgs_map1.bc’ )
   ......
   CALL PXFORM( ‘J2000’, ‘MGS_SPACECRAFT’, ET, CMAT )
   CALL MXV  ( CMAT, X, XOUT )
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Scientific Instrument Parameters (IK).

Routines

FURNSH loads an IK kernel file named FNAME containing field-of-view and other parameters for a particular
scientific instrument.

SUBROUTINE FURNSH( FNAME )
CHARACTER*(*)     FNAME

GDPOOL returns in the double precision array DVALS (subroutine GDPOOL), or in the integer array IVALS
GIPOOL (subroutine GIPOOL) or in the character array CVALS (subroutine GCPOOL) N elements (N is less than
GCPOOL or equal to ROOM) starting with the element indexed START of the value for the instrument parameter

with name NAME. Flag FOUND becomes .TRUE. if the requested parameter (and its values) was found
among the loaded parameters.

SUBROUTINE GDPOOL( NAME, START, ROOM, N, DVALS, FOUND )
SUBROUTINE GIPOOL( NAME, START, ROOM, N, IVALS, FOUND )
SUBROUTINE GCPOOL( NAME, START, ROOM, N, CVALS, FOUND )
CHARACTER*(*)     NAME
INTEGER           START
INTEGER           ROOM
INTEGER           N
DOUBLE PRECISION  DVALS (*)
INTEGER           IVALS (*)
CHARACTER*(*)     CVALS (*)
BOOLEAN           FOUND

GETFOV returns field-of-view (FOV) configuration including shape SHAPE, the name of the frame FRAME in
which the FOV is defined, the boresight vector BSIGHT, and the array BOUNDS containing N FOV
boundary vectors for the instrument with the NAIF ID INSTID. (The number of returned boundary
vectors N is less than or equal to the room ROOM available in the array BOUNDS.)

SUBROUTINE GETFOV( INSTID, ROOM, SHAPE, FRAME, BSIGHT, N, BOUNDS)
INTEGER           INSTID
INTEGER           ROOM
CHARACTER*(*)     SHAPE
CHARACTER*(*)     FRAME
DOUBLE PRECISION  BSIGHT (3)
INTEGER           N
DOUBLE PRECISION  BOUNDS (3,*)

Instrument parameters naming convention

The names of instrument parameters are defined in accordance with the following scheme:
INS-nnnnn_<item name>,

where INS shows that this parameter belongs to a scientific instrument, -nnnnn is the SPICE ID of
this instrument and <item name> is the name of the specific parameter. For example, the pixel size
for the instrument with ID code –23036 may be stored in the keyword INS-23036_PIXEL_SIZE.
In order to use GETFOV, the following set keywords defining FOV shape, boresight boundary vectors
and reference frame must be provided in the instrument IK file (-nnnnn is the SPICE ID of the
instrument):

   INS-nnnnn_FOV_FRAME, INS-nnnnn_FOV_BOUNDARY_CORNERS,
   INS-nnnnn_FOV_SHAPE, INS-nnnnn_FOV_BORESIGHT

Example

This fragment of code loads an IK file containing parameters for the instrument with code -23036 and
returns parameters of its rectangular FOV and the value of its shutter delay.
   CALL FURNSH( ’/kernels/sc23/ik/ins23036.ti’ )
   CALL GETFOV( -23036, 4, SHAPE, FRAME, BSIGHT, N, BOUNDS)
   CALL GDPOOL( ’INS-23036_SHUTTER_DELAY’, 1, 1, N, SDELAY, FOUND )
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Spacecraft Event Information (Data Base Kernel)

Routines

FURNSH loads an EK kernel file named FNAME, making it accessible to the EK readers.

SUBROUTINE FURNSH ( FNAME )
CHARACTER*(*)     FNAME

EKFIND finds E-kernel data that satisfy a set of constraints specified in a query string QUERY and returns the
number of found EK data records (rows) NMROWS. The flag ERROR will be .FALSE. if a specified
query string didn't contain any errors, otherwise it will be .TRUE. The error diagnostics string
ERRMSG will contain a description of an error if such was detected (ERROR=.TRUE.) or it will be set
blank if no errors were found in the query string .

SUBROUTINE EKFIND ( QUERY, NMROWS, ERROR, ERRMSG )
CHARACTER*(*)     QUERY
INTEGER           NMROWS
LOGICAL           ERROR
CHARACTER*(*)     ERRMSG

EKGD returns a double precision element DDATA (subroutine EKGD), character element CDATA (subroutine
EKGC EKGC) or integer element IDATA (subroutine EKGI) from a data record (row) specified by its index
EKGI ROW in the list of data records that satisfy the selection criteria submitted in the last call to EKFIND.

The column to fetch data from is specified by an index SELIDX in the SELECT clause of a query string
that was used with EKFIND to define that selection criteria, and the index of the element within the
column entry is specified by ELMENT (ELMENT is always 1 for scalar columns and can be from 1 to the
size of the column's entry for vector columns). The flag NULL will be .TRUE. if the specified data
entry is null, otherwise it will be .FALSE. The flag FOUND will be .TRUE. if the specified element
was found, otherwise it will be .FALSE.

SUBROUTINE EKGD ( SELIDX, ROW, ELMENT, DDATA, NULL, FOUND )
SUBROUTINE EKGC ( SELIDX, ROW, ELMENT, CDATA, NULL, FOUND )
SUBROUTINE EKGI ( SELIDX, ROW, ELMENT, IDATA, NULL, FOUND )
INTEGER           SELIDX
INTEGER           ROW
INTEGER           ELMENT
DOUBLE PRECISION  DDATA
CHARACTER*(*)     CDATA
INTEGER           IDATA
LOGICAL           NULL
LOGICAL           FOUND

UNLOAD unloads previously loaded EK having file name FNAME.

SUBROUTINE UNLOAD( FNAME )
CHARACTER*(*)     FNAME

EKFIND Query Syntax (Single Table Only)

The query consists of four clauses, the third and fourth of which are optional. The general form of a
query involving a single table is

   SELECT <column name> [, <column name> ...]
   FROM <table name>
   [WHERE <constraint expr.> [AND/OR <constraint expr.> ...]]
   [ORDER BY <column name> [<order>] [, <column name> [<order>] ...]]

where brackets indicate optional items. The general form of the constraint expression is

   <column name> <operator> <RHS symbol>

where <RHS symbol> is a column name or a literal value and <operator> is any of EQ, GE, GT,
LE, LIKE, LT, NE, NOT LIKE, <, <=, =, >, >=, != and  <>. The operators BETWEEN and NOT
BETWEEN are also supported.
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Spacecraft Event Information Search Example

Example

This fragment of code loads an EK file containing a table called EVENTS containing a time-type
column EVENT_TIME, an integer column EVENT_ID, a double precision column DURATION and a
character column DESC. The data entries in the first three columns have scalar values, the data entries in
the fourth column — DESC — are variable size arrays of up to 80 character long strings. The code then
searches for events within a specified time interval and fetches data from all records that were found.

CALL FURNSH( FNAME )
......
CALL PROMPT( ’Enter start UTC time>’, BEGUTC )
CALL PROMPT( ’Enter end UTC time>’,   ENDUTC )
QUERY = ’SELECT EVENT_TIME, EVENT_ID, DURATION, DESC ’ //
        ’FROM EVENTS ’ //
        ’WHERE TIME BETWEEN ’ // BEGUTC // ’ AND ’ // ENDUTC //
        ’ORDER BY TIME’
CALL EKFIND ( QUERY, NMROWS, ERROR, ERRMSG )
IF ( .NOT. ERROR ) THEN
   IF ( NMROWS .GT. 0 ) THEN
      DO ROW = 1, NMROWS

         CALL EKGD ( 1, ROW, 1, ET, NULL, FOUND )
         IF ( .NOT. NULL ) THEN
            CALL TIMOUT( ET, ’YYYY-MM-DDTHR:MN:SC.###’, UTC(ROW) )
         ELSE
            UTC(ROW) = ’ ’
         END IF

         CALL EKGI ( 2, ROW, 1, EVNTID(ROW), NULL, FOUND )
         IF ( NULL ) THEN
            EVNTID(ROW) = 0
         END IF

         CALL EKGD ( 3, ROW, 1, DURATN(ROW), NULL, FOUND )
         IF ( NULL ) THEN
            DURATN(ROW) = 0.D0
         END IF

         N = 1
         CALL EKGC ( 4, ROW, N, DESCRP(ROW,N), NULL, FOUND )
         IF ( .NOT. NULL .AND. FOUND ) THEN
            DO WHILE ( FOUND )
               N = N + 1
               CALL EKGC ( 4, ROW, N, DESCRP(ROW,N), NULL, FOUND )
            END DO
         ELSE
            DESCRP(ROW,1) = ’ ’
         END IF

      END DO
   ELSE
      WRITE( *,* ) ’No records satisfying query (’ // QUERY //
                   ’) were found.’
   END IF
ELSE
   WRITE( *,* ) ’Bad query string: ’ // ERRMSG
END IF
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Physical and Mathematical constants

Routines

HALFPI returns value of p/2, calculated as ARCCOS(-1.D0)/2.D0.

DOUBLE PRECISION FUNCTION HALFPI ()

PI returns value of p, calculated as ARCCOS(-1.D0).

DOUBLE PRECISION FUNCTION PI ()

TWOPI returns value of 2*p, calculated as 2.D0*ARCCOS(-1.D0).

DOUBLE PRECISION FUNCTION TWOPI ()

DPR returns number of degrees per radian, calculated as 180.D0/ARCCOS(-1.D0).

DOUBLE PRECISION FUNCTION DPR ()

RPD returns number of radians per degree, calculated as ARCCOS(-1.D0)/180.D0.

DOUBLE PRECISION FUNCTION RPD ()

SPD returns number of seconds per day (86400).

DOUBLE PRECISION FUNCTION SPD ()

CLIGHT returns IAU official value of light speed in vacuum (299792.458 km/sec).

DOUBLE PRECISION FUNCTION CLIGHT ()

B1900 returns Julian date corresponding to Besselian date 1900.0 (2415020.31352).

DOUBLE PRECISION FUNCTION B1900 ()

B1950 returns Julian date corresponding to Besselian date 1950.0 (2433282.423).

DOUBLE PRECISION FUNCTION B1950 ()

J1900 returns Julian date corresponding to 1899 DEC 31 12:00:00 (2415020.0).

DOUBLE PRECISION FUNCTION J1900 ()

J1950 returns Julian date corresponding to 1950 JAN 01 00:00:00 (2433282.5).

DOUBLE PRECISION FUNCTION J1950 ()

J2000 returns Julian date corresponding to 2000 JAN 01 12:00:00 (2451545.0).

DOUBLE PRECISION FUNCTION J2000 ()

J2100 returns Julian date corresponding to 2100 JAN 01 12:00:00 (2488070.0).

DOUBLE PRECISION FUNCTION J2100 ()

SPICE function declarations

All of the functions above as well as any other SPICELIB function must be explicitly declared in the
declaration section of the program before they can be called in the program’s code. This assures that the
function will return a value of the correct type. The two lines below declare the functions SPD and DPR.

   ...
   DOUBLE PRECISION  DPR
   DOUBLE PRECISION  SPD

Example

This fragment of code declares and calls the DPR function to calculate ANG in degrees.

   DOUBLE PRECISION  DPR
   ...
   ANG = ACOS( X ) * DPR ()
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Rectangular Coordinates.

Routines

RECCYL calculates cylindrical coordinates — distance to Z axis R, angle from XZ plane LONGC and height above
the XZ plane Z — of a point given by its rectangular coordinates RECTAN.

SUBROUTINE RECCYL ( RECTAN, R, LONGC, Z )
DOUBLE PRECISION  RECTAN (3)
DOUBLE PRECISION  R
DOUBLE PRECISION  LONGC
DOUBLE PRECISION  Z

RECGEO calculates geodetic coordinates — longitude LONG, latitude LAT and distance to center ALT — of a
point given by its rectangular coordinates RECTAN, the equatorial radius of planet ellipsoid RE and the
flattening coefficient F ( F=(Requ-Rpol)/Requ ) of this ellipsoid.

SUBROUTINE RECGEO ( RECTAN, RE, F, LONG, LAT, ALT )
DOUBLE PRECISION  RECTAN (3)
DOUBLE PRECISION  RE
DOUBLE PRECISION  F
DOUBLE PRECISION  LONG
DOUBLE PRECISION  LAT
DOUBLE PRECISION  ALT

RECLAT calculates latitudinal coordinates — longitude LONG, latitude LAT and distance to center RADIUS — of
a point given by its rectangular coordinates RECTAN.

SUBROUTINE RECLAT ( RECTAN, RADIUS, LONG, LAT )
DOUBLE PRECISION  RECTAN (3)
DOUBLE PRECISION  RADIUS
DOUBLE PRECISION  LONG
DOUBLE PRECISION  LAT

RECRAD calculates right ascension RA, declination DEC and distance from center RANGE for a point given by its
rectangular coordinates RECTAN.

SUBROUTINE RECRAD ( RECTAN, RANGE, RA, DEC )
DOUBLE PRECISION  RECTAN (3)
DOUBLE PRECISION  RANGE
DOUBLE PRECISION  RA
DOUBLE PRECISION  DEC

RECSPH calculates spherical coordinates — distance to center R, angle between vector and Z axis COLAT, and
angle between vector and XZ plane LONG — of a point given by its rectangular coordinates RECTAN.

SUBROUTINE RECSPH ( RECTAN, R, COLAT, LONG )
DOUBLE PRECISION  RECTAN (3)
DOUBLE PRECISION  R
DOUBLE PRECISION  COLAT
DOUBLE PRECISION  LONG

Example

This fragment of code loads a PCK file containing physical constants of planets, reads values for the
Earth ellipsoid radii and calculates the geodetic coordinates of a point X given by its rectangular
coordinates.

   ...
   CALL FURNSH( ’/kernels/generic/lsk/pck00006.tpc’ )
   CALL BODVAR( 399, ’RADII’, N, R )
   ...
   CALL RECGEO( X, R(1), (R(1)-R(3))/R(1), LONG, LAT, ALT )
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Spherical and cylindrical coordinates.

Routines

CYLLAT calculates longitude LONG, latitude LAT and distance to center RADIUS for a point given by its
cylindrical coordinates — distance R, angle LONGC and height Z.

SUBROUTINE CYLLAT ( R, LONGC, Z, RADIUS, LONG, LAT )
DOUBLE PRECISION  R
DOUBLE PRECISION  LONGC
DOUBLE PRECISION  Z
DOUBLE PRECISION  RADIUS
DOUBLE PRECISION  LONG
DOUBLE PRECISION  LAT

CYLREC calculates rectangular coordinates RECTAN of a point given by its cylindrical coordinates.

SUBROUTINE RECCYL ( R, LONGC, Z, RECTAN )
DOUBLE PRECISION  R
DOUBLE PRECISION  LONGC
DOUBLE PRECISION  Z
DOUBLE PRECISION  RECTAN (3)

CYLSPH calculates spherical coordinates — distance to center RADIUS, angle between point and Z axis COLAT
and angle between vector and XZ plane LONG, for a point given by its cylindrical coordinates.

SUBROUTINE CYLSPH ( R, LONGC, Z, RADIUS, COLAT, LONG )
DOUBLE PRECISION  R
DOUBLE PRECISION  LONGC
DOUBLE PRECISION  Z
DOUBLE PRECISION  RADIUS
DOUBLE PRECISION  COLAT
DOUBLE PRECISION  LONG

SPHCYL calculates cylindrical coordinates — distance from Z axis RADIUS, angle from XZ plane LONGC and
height above XZ plane Z, of a point given by its spherical coordinates — distance to center R, angle
between vector and Z axis COLAT and angle between vector and XZ plane LONG.

SUBROUTINE SPHCYL ( R, COLAT, LONG, RADIUS, LONGC, Z )
DOUBLE PRECISION  R
DOUBLE PRECISION  COLAT
DOUBLE PRECISION  LONG
DOUBLE PRECISION  RADIUS
DOUBLE PRECISION  LONGC
DOUBLE PRECISION  Z

SPHLAT calculates latitudinal coordinates — longitude LONG, latitude LAT and distance from center RADIUS, of
a point given by its spherical coordinates.

SUBROUTINE SPHLAT ( R, COLAT, LONG, RADIUS, LONG, LAT )
DOUBLE PRECISION  R
DOUBLE PRECISION  COLAT
DOUBLE PRECISION  LONG
DOUBLE PRECISION  RADIUS
DOUBLE PRECISION  LONG
DOUBLE PRECISION  LAT

SPHREC calculates rectangular coordinates RECTAN of a point given by its spherical coordinates.

SUBROUTINE SPHREC ( R, COLAT, LONG, RECTAN )
DOUBLE PRECISION  R
DOUBLE PRECISION  COLAT
DOUBLE PRECISION  LONG
DOUBLE PRECISION  RECTAN (3)
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Latitudinal and Geodetic coordinates.

Routines

LATCYL calculates cylindrical coordinates — distance RADIUS, angle LONGC and height Z, of a point given by
its latitudinal coordinates — longitude LONG, latitude LAT and distance to center R.

SUBROUTINE LATCYL ( R, LONG, LAT, RADIUS, LONGC, Z )
DOUBLE PRECISION  R
DOUBLE PRECISION  LONG
DOUBLE PRECISION  LAT
DOUBLE PRECISION  RADIUS
DOUBLE PRECISION  LONGC
DOUBLE PRECISION  Z

LATREC calculates rectangular coordinates RECTAN of a point given by its latitudinal coordinates.

SUBROUTINE LATREC ( R, LONG, LAT, RECTAN )
DOUBLE PRECISION  R
DOUBLE PRECISION  LONG
DOUBLE PRECISION  LAT
DOUBLE PRECISION  RECTAN (3)

LATSPH calculates spherical coordinates of a point given by its latitudinal coordinates.

SUBROUTINE LATSPH ( R, LONG, LAT, RADIUS, COLAT, LONG )
DOUBLE PRECISION  R
DOUBLE PRECISION  LONG
DOUBLE PRECISION  LAT
DOUBLE PRECISION  RADIUS
DOUBLE PRECISION  COLAT
DOUBLE PRECISION  LONG

GEOREC calculates rectangular coordinates RECTAN of a point given by its geodetic coordinates — longitude
LONG, latitude LAT and distance from center ALT. Also returns the equatorial radius of the planet
ellipsoid RE and the flattening coefficient F ( F=(Requ-Rpol)/Requ ) of this ellipsoid.

SUBROUTINE GEOREC ( LONG, LAT, ALT, RE, F, RECTAN )
DOUBLE PRECISION  LONG
DOUBLE PRECISION  LAT
DOUBLE PRECISION  ALT
DOUBLE PRECISION  RE
DOUBLE PRECISION  F
DOUBLE PRECISION  RECTAN (3)

SRFREC calculates rectangular coordinates RECTAN of a point on the surface of a body (planet or satellite) with
ID BODY given by the point’s planetocentric longitude LONG and latitude LAT. A PCK file containing
constants for this body must be loaded before this subroutine is called.

SUBROUTINE SRFREC ( BODY, LONG, LAT, RECTAN )
INTEGER           BODY
DOUBLE PRECISION  LONG
DOUBLE PRECISION  LAT
DOUBLE PRECISION  RECTAN (3)

Example

This fragment of code loads a PCK file and calculates rectangular coordinates of a point having geodetic
longitude LONG and latitude LAT on the Mars surface.

   ...
   CALL FURNSH( ’/kernels/generic/pck/pck00006.tpc" )
   ...
   CALL SRFREC( 499, LONG, LAT, VECT )
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Simple operations on 3-D vectors.

Routines

VADD adds two vectors V1 and V2 and writes result in vector VOUT.

SUBROUTINE VADD ( V1, V2, VOUT )

VSUB subtracts vector V2 from vector V1 and writes result vector in VOUT.

SUBROUTINE VSUB ( V1, V2, VOUT )

VCRSS computes cross product of vectors V1 and V2 and writes result vector in VOUT.

SUBROUTINE VCRSS ( V1, V2, VOUT )

VDOT returns dot product of two vectors V1 and V2.

DOUBLE PRECISION FUNCTION VDOT ( V1, V2 )

VSCL multiplies vector V1 and scalar S and writes result in vector VOUT.

SUBROUTINE VSCL ( S, V1, VOUT )

VMINUS negates vector V1 and writes result in vector VOUT.

SUBROUTINE VMINUS ( V1, VOUT )

VEQU makes vector VOUT equal to vector V1.

SUBROUTINE VEQU ( V1, VOUT )

VZERO indicates whether vector V1 is the zero vector. If “yes”, returns .TRUE.

LOGICAL FUNCTION VZERO ( V1 )

VSEP computes the separation angle between two vectors V1 and V2. Returns zero if one of vectors is the zero
vector.

DOUBLE PRECISION FUNCTION VSEP ( V1, V2 )

VDIST returns distance between two vectors V1 and V2, equal to ||V1-V2||.

DOUBLE PRECISION FUNCTION VDIST ( V1, V2 )

VNORM computes magnitude of vector V1.

DOUBLE PRECISION FUNCTION VNORM ( V1 )

VHAT finds the unit vector VOUT along vector V1.

SUBROUTINE VHAT ( V1, VOUT )

UCRSS finds unit vector VOUT along the cross product of vectors V1 and V2.

SUBROUTINE UCRSS ( V1, V2, VOUT )

UNORM finds magnitude VMAG of and unit vector VOUT along with vector V1.

SUBROUTINE UNORM ( V1, VOUT, VMAG )

Arguments of subroutines

Input and output parameters of the routines listed above should be declared as follows:

DOUBLE PRECISION  V1 (3)
DOUBLE PRECISION  V2 (3)
DOUBLE PRECISION  VOUT (3)
DOUBLE PRECISION  S
DOUBLE PRECISION  VMAG
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Projections, linear combinations and rotations of 3-D vectors.

Routines

VPERP finds the component of vector V1 that is rectangular to vector V2 and writes it into vector VOUT.

SUBROUTINE VPERP ( V1, V2, VOUT )

VPROJ finds the projection of vector V1 onto vector V2 and writes it in vector VOUT.

SUBROUTINE VPROJ ( V1, V2, VOUT )

VROTV rotates vector V1 about axis vector V2 by angle ANGLE and writes result vector in VOUT.

SUBROUTINE VROTV ( V1, V2, ANGLE, VOUT )

ROTVEC rotates vector V1 about axis IAXIS given by its ID (for “X” axis ID is 1, “Y”—2, “Z”—3) by angle
ANGLE and writes the result in vector VOUT.

SUBROUTINE ROTVEC ( V1, ANGLE, IAXIS, VOUT )

NPLNPT finds point VOUT nearest to point V3 and belonging to the line given by point V1 and direction V2 and
calculates distance DIST between points V3 and VOUT.

SUBROUTINE NPLNPT ( V1, V2, V3, VOUT, DIST )

VPRJP finds projection of vector V1 into plane PLANE and writes result vector in VOUT.

SUBROUTINE VPRJP ( V1, PLANE, VOUT )

VPRJPI finds the vector VOUT in specified plane PROJPL that maps to vector V1 in another plane INVPL under
orthogonal projection. The flag FOUND becomes .FALSE. if the required vector couldn’t be computed
i.e. the planes are orthogonal or almost orthogonal.

SUBROUTINE VPRJPI ( V1, PROJPL, INVPL, VOUT, FOUND )

VLCOM calculates the linear combination of the two vectors V1 multiplied by A and V2 multiplied by B and
writes the result vector VOUT.

SUBROUTINE VLCOM ( A, V1, B, V2, VOUT )

VLCOM3 calculates the linear combination of the three vectors V1, V2 and V3 multiplied by A, B and C and
returns it in vector VOUT.

SUBROUTINE VLCOM3 ( A, V1, B, V2, C, V3, VOUT )

Routines arguments

The input and output parameters of the routines listed above should be declared as shown below. The
UBPL parameter is used for PLANE type variable declarations.

DOUBLE PRECISION  V1 (3)
DOUBLE PRECISION  V2 (3)
DOUBLE PRECISION  V3 (3)
DOUBLE PRECISION  VOUT (3)
DOUBLE PRECISION  ANGLE
DOUBLE PRECISION  DIST
DOUBLE PRECISION  A
DOUBLE PRECISION  B
DOUBLE PRECISION  C
LOGICAL           FOUND
INTEGER           IAXIS

INTEGER           UBPL
PARAMETER       ( UBPL   =   4 )
DOUBLE PRECISION  PLANE ( UBPL )
DOUBLE PRECISION  PROJPL( UBPL )
DOUBLE PRECISION  INVPL ( UBPL )
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Operations on 3x3 matrixes.

Routines

MXM multiples matrix M1 and matrix M2 and writes result in matrix MOUT.

SUBROUTINE MXM ( M1, M2, MOUT )

MXMT multiplies matrix M1 and the transpose of matrix M2 and writes result in matrix MOUT.

SUBROUTINE MXMT ( M1, M2, MOUT )

MXV multiplies matrix M1 and vector V1 and writes result in vector VOUT.

SUBROUTINE MXV ( M1, V1, VOUT )

MTXM multiplies the transpose of matrix M1 and matrix M2 and writes result in matrix MOUT.

SUBROUTINE MTXM ( M1, M2, MOUT )

MTXV multiplies the transpose of matrix M1 and vector V1 and writes result in vector VOUT.

SUBROUTINE MTXV ( M1, V1, VOUT )

VTMV returns the multiplication of the transpose of vector V1, matrix M1 and vector V2.

DOUBLE PRECISION FUNCTION VTMV ( V1, M1, V2 )

XPOSE finds the transpose of matrix M1 and writes it in matrix MOUT.

SUBROUTINE XPOSE ( M1, MOUT )

MEQU sets matrix MOUT equal to matrix M1.

SUBROUTINE MEQU ( M1, MOUT )

DET returns the determinant of matrix M1.

DOUBLE PRECISION FUNCTION DET ( M1 )

TRACE returns the trace of matrix M1.

DOUBLE PRECISION FUNCTION TRACE ( M1 )

Routines arguments

The input and output parameters of the routines listed above should be declared as follows:

DOUBLE PRECISION  V1 (3)
DOUBLE PRECISION  V2 (3)
DOUBLE PRECISION  VOUT (3)
DOUBLE PRECISION  M1 (3,3)
DOUBLE PRECISION  M2 (3,3)
DOUBLE PRECISION  MOUT (3,3)

Example

This fragment of code calculates the transformation matrix MJ2INS which rotates vectors from the
inertial frame “J2000” to the instrument reference frame using two intermediate transformation
matrixes: from “J2000” to instrument platform MJ2PL, and from platform to instrument MPL2IN. It
then finds the position of the Sun SUNINS in the instrument reference frame.

   ...
   CALL MXM ( MPL2IN, MJ2PL, MJ2INS )
   CALL MXV ( MJ2INS, SUNJ, SUNINS )
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Operations on planes.

PLANE data type

An array of dimension 4 is used in the SPICE system for representation of planes. It is recommended
that for the PLANE type one should use parameter UBPL for dimension declarations.

INTEGER           UBPL
PARAMETER       ( UBPL   =   4 )
DOUBLE PRECISION  PLANE ( UBPL )

Routines

NVC2PL creates a plane PLANE using a normal vector NORMAL and the distance from origin to plane CONST.

SUBROUTINE NVC2PL ( NORMAL, CONST, PLANE )

NVP2PL creates a plane PLANE using a normal vector NORMAL and a point POINT belonging to the plane.

SUBROUTINE NVP2PL ( NORMAL, POINT, PLANE )

PSV2PL creates a plane PLANE using a point in the plane POINT and two linear independent vectors V1 and V2.

SUBROUTINE PSV2PL ( POINT, V1, V2, PLANE )

PL2NVC calculates for plane PLANE its normal vector NORMAL and distance from plane to origin CONST.

SUBROUTINE PL2NVC ( PLANE, NORMAL, CONST )

PL2NVP calculates for plane PLANE its normal vector NORMAL and the point POINT belonging to it and nearest
to the origin.

SUBROUTINE PL2NVP ( PLANE, NORMAL, POINT )

PL2PSV calculates for plane PLANE the point POINT nearest to the origin and two orthogonal vectors V1 and
V2 lying in it.

SUBROUTINE PL2PSV ( PLANE, POINT, V1, V2 )

INRYPL finds the intersection of a ray given by a starting point VERTEX, direction DIR and plane PLANE, and
returns the number of intersection point in NXPTS (can be 0 or 1) and the coordinates of the point in
XPT (if NXPTS=1).

SUBROUTINE INRYPL ( VERTEX, DIR, PLANE, NXPTS, XPT )

Routines arguments

The input and output parameters of the routines listed above should be declared as shown below:

INTEGER           UBPL
PARAMETER       ( UBPL   =   4 )
DOUBLE PRECISION  PLANE ( UBPL )

DOUBLE PRECISION  NORMAL (3)
DOUBLE PRECISION  CONST
DOUBLE PRECISION  POINT  (3)
DOUBLE PRECISION  V1     (3)
DOUBLE PRECISION  V2     (3)
DOUBLE PRECISION  VERTEX (3)
DOUBLE PRECISION  DIR    (3)
INTEGER           NXPTS
DOUBLE PRECISION  XPT    (3)
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Operations on ellipses.

ELLIPSE data type

A double precision array of dimension 9 is used in the SPICE system for representation of ellipses in 3-
dimensional space. It is recommended the for the ELLIPSE type one should use the UBEL parameter
for dimension declarations.

INTEGER           UBEL
PARAMETER       ( UBEL   =    9 )
DOUBLE PRECISION  ELLIPS ( UBEL )

Routines

CGV2EL creates an ellipse ELLIPS using its center CENTER and two generating vectors V1 and V2 (vectors can
be non-orthogonal and even linearly dependent: in the last case the ellipse will be degenerate).

SUBROUTINE CGV2EL ( CENTER, V1, V2, ELLIPS )

EL2CGV finds for ellipse ELLIPS its center CENTER and vectors SMAJOR and SMINOR representing its axes.

SUBROUTINE EL2CGV ( ELLIPS, CENTER, SMAJOR, SMINOR )

SAELGV given two generating vectors, V1 and V2, finds ellipse’s axes vectors SMAJOR and SMINOR.

SUBROUTINE SAELGV ( V1, V2, SMAJOR, SMINOR )

INELPL finds intersection of ellipse ELLIPS and plane PLANE and writes number of intersection points to
NXPTS and coordinates of these points in XPT1 and XPT2.

SUBROUTINE INELPL ( ELLIPS, PLANE, NXPTS, XPT1, XPT2 )

NPELPT finds on ellipse ELLIPS the point NRPT nearest to a given point POINT and the distance between these
points DIST.

SUBROUTINE NPELPT ( POINT, ELLIPS, NRPT, DIST )

PJELPL finds projection of ellipse ELLIPS on the plane PLANE and write the result in ellipse ELLOUT.

SUBROUTINE PJELPL ( ELLIPS, PLANE, ELLOUT )

Routines arguments

The input and output parameters of the routines listed above should be declared as shown below:

INTEGER           UBEL
PARAMETER       ( UBEL   =    9 )
DOUBLE PRECISION  ELLIPS ( UBEL )
DOUBLE PRECISION  ELLOUT ( UBEL )

INTEGER           UBPL
PARAMETER       ( UBPL   =   4 )
DOUBLE PRECISION  PLANE ( UBPL )

DOUBLE PRECISION  V1     (3)
DOUBLE PRECISION  V2     (3)
DOUBLE PRECISION  SMAJOR (3)
DOUBLE PRECISION  SMINOR (3)
INTEGER           NXPTS
DOUBLE PRECISION  XPT1   (3)
DOUBLE PRECISION  XPT2   (3)
DOUBLE PRECISION  NRPT   (3)
DOUBLE PRECISION  DIST
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Operations on ellipsoids.

Routines

NEARPT finds on an ellipsoid given by axes A, B and C, the point NRPT nearest to a given point POINT on the
ellipse, and returns the distance between them in DIST.

SUBROUTINE NEARPT ( POINT, A, B, C, NRPT, DIST )

SURFPT finds intersection of a ray given by its starting point VERTEX and direction DIR and an ellipsoid given
by its axes A, B and C, and writes coordinates of this point in XPT. The flag FOUND becomes .TRUE.
if such a point exists.

SUBROUTINE SURFPT ( VERTEX, DIR, A, B, C, XPT, FOUND )

SURFNM finds the unit normal vector NORMAL to the surface of an ellipsoid at the point POINT on the ellipsoid
given by axes A, B and C.

SUBROUTINE SURFNM ( A, B, C, POINT, NORMAL )

EDLIMB finds limb of an ellipsoid given by axes A, B and C as seen from point VIEWPT and returns it in
ELLIPSE type variable LIMB.

SUBROUTINE EDLIMB ( A, B, C, VIEWPT, LIMB )

NPEDLN finds on an ellipsoid given by axes A, B and C the point NRPT nearest to the line given by point POINT
and direction DIR, and calculates the distance DIST between the line and point.

SUBROUTINE NPEDLN ( A, B, C, POINT, DIR, NRPT, DIST )

INEDPL finds the ellipse ELLIPS that is the intersection of the ellipsoid given by axes A, B and C and the plane
PLANE. The flag FOUND becomes .TRUE. if such an intersection exists.

SUBROUTINE INEDPL ( A, B, C, PLANE, ELLIPS, FOUND )

Routines arguments

The input and output parameters of the routines listed above should be declared as shown below:

DOUBLE PRECISION  A
DOUBLE PRECISION  B
DOUBLE PRECISION  C
DOUBLE PRECISION  POINT  (3)
DOUBLE PRECISION  NRPT   (3)
DOUBLE PRECISION  VERTEX (3)
DOUBLE PRECISION  DIR    (3)
INTEGER           NXPTS
DOUBLE PRECISION  XPT    (3)
DOUBLE PRECISION  DIST
DOUBLE PRECISION  VIEWPT (3)
LOGICAL           FOUND

INTEGER           UBEL
PARAMETER       ( UBEL   =    9 )
DOUBLE PRECISION  LIMB   ( UBEL )
DOUBLE PRECISION  ELLIPS ( UBEL )

INTEGER           UBPL
PARAMETER       ( UBPL   =    4 )
DOUBLE PRECISION  PLANE  ( UBPL )
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Creation of 3x3 transformation matrixes.

Routines

ROTATE calculates the matrix MOUT which rotates vectors about axis IAXIS (for the “X” axis the ID is 1, “Y”–
2, “Z”–3) by angle ANGLE.

SUBROUTINE ROTATE ( ANGLE, IAXIS, MOUT )
DOUBLE PRECISION  ANGLE
INTEGER           IAXIS
DOUBLE PRECISION  MOUT (3,3)

ROTMAT rotates matrix M1 by angle ANGLE about IAXIS axis (“X”—1, “Y”—2,“Z”—3) and returns resulting
matrix in MOUT. So, MOUT=[ANGLE]IAXIS*M1, where [ANGLE]IAXIS is the matrix which rotates
vectors about IAXIS axis by angle ANGLE.

SUBROUTINE ROTMAT ( M1, ANGLE, IAXIS, MOUT )
DOUBLE PRECISION  M1 (3,3)
DOUBLE PRECISION  ANGLE
INTEGER           IAXIS
DOUBLE PRECISION  MOUT (3,3)

TWOVEC finds transformation matrix MOUT which rotates vectors to the reference frame having a given vector
AXDEF as specified axis INDEXA (“X”—1, “Y”—2,“Z”—3) and having a second given vector
PLNDEF lying in the coordinate plane INDEXA–INDEXP (axis INDEXP is defined by the same rule).
The direction of the third axis is taken from condition that this frame is right-handed.

SUBROUTINE TWOVEC ( AXDEF, INDEXA, PLNDEF, INDEXP, MOUT )
DOUBLE PRECISION  AXDEF (3)
INTEGER           INDEXA
DOUBLE PRECISION  PLNDEF (3)
INTEGER           INDEXP
DOUBLE PRECISION  MOUT (3,3)

EUL2M calculates the transformation matrix MOUT from Euler angles ANG1, ANG2 and ANG3 and their
corresponding axes of rotation AX1, AX2 and AX3 (“X”—1, “Y”—2,“Z”—3).

SUBROUTINE EUL2M ( ANG3, ANG2, ANG1, AX3, AX2, AX1, MOUT  )
DOUBLE PRECISION  ANG3, ANG2, ANG1
INTEGER           AX3,  AX2,  AX1
DOUBLE PRECISION  MOUT (3,3)

M2EUL calculates Euler angles ANG1, ANG2 and ANG3 and the corresponding axes of rotation AX1, AX2 and
AX3 (“X”—1, “Y”—2,“Z”—3) for the transformation matrix M1.

SUBROUTINE M2EUL ( M1, ANG3, ANG2, ANG1, AX3, AX2, AX1 )
DOUBLE PRECISION  M1 (3,3)
DOUBLE PRECISION  ANG3, ANG2, ANG1
INTEGER           AX3,  AX2,  AX1

Example

This fragment of code creates matrix MROT from right ascension RA, declination DEC and twist TWIST.

   ...
   CALL EUL2M ( TWIST, HALFPI()-DEC, RA, 3, 2, 3, MROT )
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Orbital elements.

Orbital elements representation

Classical orbital elements are stored in double precision arrays containing 8 numbers.

DOUBLE PRECISION  ELTS ( 8 )

The elements of this array contain:

ELTS(1) Distance to pericenter Rp, (km);
ELTS(2) Eccentricity e;
ELTS(3) Inclination i (rad);
ELTS(4) Longitude of ascending node W (rad);
ELTS(5) Argument of periapse w (rad);
ELTS(6) mean anomaly at epoch E (rad);
ELTS(7) epoch t (ephemeris seconds past J2000);
ELTS(8) Gravitational parameter of planet m (km3/sec2).

Routines

CONICS calculates the position and velocity STATE of an orbiting body from a set of elliptic, hyperbolic or
parabolic orbital elements ELTS at ephemeris time ET.

SUBROUTINE CONICS ( ELTS, ET, STATE )
DOUBLE PRECISION  ELTS (8)
DOUBLE PRECISION  ET
DOUBLE PRECISION  STATE (6)

OSCELT given the state STATE of an orbiting body at ephemeris time ET, and given the gravitational parameter
of the planet MU, calculates orbital elements ELTS for this orbiting body.

SUBROUTINE OSCELT ( STATE, ET, MU, ELTS )
DOUBLE PRECISION  STATE (6)
DOUBLE PRECISION  ET
DOUBLE PRECISION  MU
DOUBLE PRECISION  ELTS (8)

Example

This fragment of code reads position and velocity of a Mars-orbiting spacecraft with ID -23 from
loaded SPK files, transforms this state from the inertial frame ’J2000’ to the Mars “equator—north
pole” non-rotating reference frame and calculates from this new state the orbital elements for the
spacecraft.

   ...
   CALL FURNSH ( ’/kernels/sc23/spk/sc23_orbit036.bsp’ )
   CALL SPKEZR ( ’-23’, ET, ’J2000’, ’NONE’, ’MARS’, STATE, LT )

   DO I = 1, 3
      VEC(I) = STATE (I)
      VEL(I) = STATE (I+3)
   END DO

   CALL MXV ( MJ2MRS, VEC, VEC )
   CALL MXV ( MJ2MRS, VEL, VEL )

   DO I = 1, 3
      STATE (I)   = VEC(I)
      STATE (I+3) = VEL(I)
   END DO

   CALL OSCELT ( STATE, ET, MARSMU, ORBELM )
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Observation Geometry – Sub-observer Point and Illumination Angles.

Routines

SUBPT determines the coordinates of the sub-observer point SPOINT computed using “near point on triaxial
ellipsoid” (METHOD=’NEAR POINT’) or “intercept of radius vector with ellipsoid”
(METHOD=’INTERCEPT’) method for observer OBS on a target body TARG at ephemeris time ET.
The resulting coordinates of the sub-observer point can be uncorrected (ABR=’NONE’) or optionally
corrected for light time (ABR=’LT’) or light time and stellar aberration (ABERR=’LT+S’). Also,
returns the observer’s altitude ALT above the target body.

SUBROUTINE SUBPT ( METHOD, TARG, ET, ABR, OBS, SPOINT, ALT )
CHARACTER*(*)     METHOD
CHARACTER*(*)     TARG
DOUBLE PRECISION  ET
CHARACTER*(*)     ABR
CHARACTER*(*)     OBS
DOUBLE PRECISION  SPOINT ( 3 )
DOUBLE PRECISION  ALT

ILLUM computes the illumination angles – phase angle PHASE, solar incidence angle SOLAR, and emission
angle EMISSN – at a specified surface point SPNT of a target body TARG as seen from observer OBS
at ephemeris time ET. The resulting angles can be computed using uncorrected (ABR=’NONE’) or
optionally corrected for light time (ABR=’LT’) or light time and stellar aberration (ABR=’LT+S’)
state vectors for the observer, target and the sun.

SUBROUTINE ILLUM ( TARG, ET, ABR, OBS, SPNT, PHASE, SOLAR, EMISSN )
CHARACTER*(*)     TARG
DOUBLE PRECISION  ET
CHARACTER*(*)     ABR
CHARACTER*(*)     OBS
DOUBLE PRECISION  SPNT    ( 3 )
DOUBLE PRECISION  PHASE
DOUBLE PRECISION  SOLAR
DOUBLE PRECISION  EMISSN

Example

This fragment of code uses data from generic and MGS kernels listed in the following meta-kernel file:

   \begindata
      KERNELS_TO_LOAD = (
                         ’/kernels/generic/lsk/naif0007.tls’
                         ’/kernels/generic/pck/pck00006.tpc’
                         ’/kernels/generic/spk/de405.bsp’
                         ’/kernels/mgs/spk/mgs_map1.bsp’
                        )
   \begintext

to compute the illumination angles at the MGS sub-spacecraft point on the surface of Mars, determined
using “nearest point of ellipsoid” method, at UTC 1999 April 1 12:00.

   ...
   CALL FURNSH( ’mgs_kernels.furnsh’ )
   ...
   CALL STR2ET( ’1999 April 1 12:00’, ET )
   CALL SUBPT ( ’NEAR POINT’, ’MARS’, ET, ’LT’, ’MGS’, SPNT, ALT )
   CALL ILLUM ( ’MARS’, ET, ’LT’, ’MGS’, SPNT, PHASE, SOLAR, EMISSN )
   ...
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Observation Geometry – Surface Intercept Point.

Routines

SRFXPT determines the body-fixed coordinates of the surface intercept point SPOINT on the surface of the target
body named TARGET with the shape model specified by METHOD, by the ray DVEC emanating from the
observer body named OBSRVR and specified in the reference frame DREF, corrected according to the
specified aberration correction ABCORR, at ephemeris time ET. The distance between the observer and
surface intercept point DIST, intercept epoch TRGEPC, observer position OBSPOS, and a logical flag
FOUND indicating whether the ray intercepts the target surface are returned in addition to the Cartesian
coordinates of the intercept point. The only shape model currently supported by the routine is
‘ELLIPSOID’.

SUBROUTINE SRFXPT ( METHOD,  TARGET,  ET,      ABCORR,
                    OBSRVR,  DREF,    DVEC,    SPOINT,
                    DIST,    TRGEPC,  OBSPOS,  FOUND )
CHARACTER*(*)         METHOD
CHARACTER*(*)         TARGET
DOUBLE PRECISION      ET
CHARACTER*(*)         ABCORR
CHARACTER*(*)         OBSRVR
CHARACTER*(*)         DREF
DOUBLE PRECISION      DVEC   ( 3 )
DOUBLE PRECISION      SPOINT ( 3 )
DOUBLE PRECISION      DIST
DOUBLE PRECISION      TRGEPC
DOUBLE PRECISION      OBSPOS ( 3 )
LOGICAL               FOUND

Example

This fragment of code uses data from generic and Mars 2001 Odyssey (M01) kernels listed in the
following meta-kernel file:

   \begindata
      KERNELS_TO_LOAD = (
                         ’/kernels/generic/lsk/naif0007.tls’
                         ’/kernels/generic/pck/pck00008.tpc’
                         ’/kernels/generic/spk/de405.bsp’
                         ‘/kernels/m01/fk/m01.tf’
                         ’/kernels/m01/sclk/m01.tsc’
                         ‘/kernels/m01/ik/m01_themis.ti’
                         ’/kernels/m01/spk/m01_map1.bsp’
                         ’/kernels/m01/ck/m01_map1.bc’
                         )
   \begintext

to compute the surface intercept point of the THEMIS IR camera boresight at UTC 2002 MAR 12
12:00.

   ...
   CALL FURNSH( ’m01_kernels.furnsh’ )
   ...
   CALL GETFOV( -53031, 4, SHAPE, FRAME, BSIGHT, N, BOUNDS )
   ...
   CALL STR2ET( ’2002-03-12 12:00’, ET )
   CALL SRFXPT( ‘ELLIPSOID’, ‘MARS’, ET, ‘LT+S’,
                ‘M01’, FRAME, BSIGHT,
                SPOINT, DIST, TRGEPC, OBSPOS, FOUND )
   ...


