The following kernels cas_enceladus_ssd_spc_0128icq_v1.bds cas_enceladus_ssd_spc_0256icq_v1.bds cas_enceladus_ssd_spc_0512icq_v1.bds cas_enceladus_ssd_spc_1024icq_v1.bds cas_enceladus_ssd_spc_eq035m_v1.bds cas_enceladus_ssd_spc_south025m_v1.bds cas_enceladus_ssd_spc_south050m_v1.bds cas_enceladus_ssd_spc_south100m_v1.bds cas_v43.tf enceladus_ssd_230702_v1.tpc are staged in this directory in preparation for their inclusion in the CASSINI SPICE PDS archive and to facilitate the review of the publication cited below. A brief description of this set provided by Dr. Park on 11/06/23 in the file originally named README_SPC230702 is below. BVS/NAIF, 11/06/23 ******************************************************************************* Point of contact: Ryan S. Park (Ryan.S.Park@jpl.nasa.gov) Delivery Date: October 23, 2023 ******************************************************************************* *** SUMMARY *** ******************************************************************************* A high-resolution global shape model of Enceladus was determined using a stereophotoclinometry (SPC) technique developed at the Jet Propulsion Laboratory by processing Cassini's imaging data during Enceladus encounters. The resulting global shape models has a resolution of 500 m, with some local regions having 25 m to 100 m resolution. The reference frame used is consistent with the International Astronomical Union's definition, where the center of the Salih crater is located at -5 deg East longitude. The rotational frame also includes the forced libration amplitude of 0.091 deg +- 0.009 deg. More details can be found in: Park et al. (2023), The global shape, gravity field, and libration of Enceladus, submitted to JGR-Planets for publication. POC: Ryan S. Park, ryan.s.park@jpl.nasa.gov ******************************************************************************* *** IMPORTANT NOTE *** ******************************************************************************* It is recommended that you use the following SPICE kernels when using this product: cas_v43.tf (or later) : Enceladus surface name/ID mappings enceladus_ssd_230702_v1.tpc : Enceladus rotation parameters sat441.bsp : Enceladus ephemeris de440.bsp : Planetary ephemeris ******************************************************************************* *** AVAILABLE FILES *** ******************************************************************************* Global Enceladus DSK files in different ICQ resolutions: cas_enceladus_ssd_spc_1024icq_v1.bds (ICQ resolution 1024) cas_enceladus_ssd_spc_0512icq_v1.bds (ICQ resolution 512) cas_enceladus_ssd_spc_0256icq_v1.bds (ICQ resolution 256) cas_enceladus_ssd_spc_0128icq_v1.bds (ICQ resolution 128) Enceladus DSK files for local regions: cas_enceladus_ssd_spc_south025m_v1.bds (South Pole at 25 m resolution) cas_enceladus_ssd_spc_south050m_v1.bds (South Pole at 50 m resolution) cas_enceladus_ssd_spc_south100m_v1.bds (South Pole at 100 m resolution) cas_enceladus_ssd_spc_eq035m_v1.bds (Equatorial region at 35 m resolution) ** Note: the data contained in these four local region DSK files are irregular and the min/max values of the lat/lon boundaries shown in the DSK header do not cover the whole area. Rendered topography of these regions are shown in Park et al. (2023). Specifically, the ranges are: File name: cas_enceladus_ssd_spc_south025m_v1.bds MINIMUM_LATITUDE = -86.0 MAXIMUM_LATITUDE = -73.0 MINIMUM_LONGITUDE = -72.0 MAXIMUM_LONGITUDE = -11.0 File name: cas_enceladus_ssd_spc_south050m_v1.bds MINIMUM_LATITUDE = -88.0 MAXIMUM_LATITUDE = -69.0 MINIMUM_LONGITUDE = -94.0 MAXIMUM_LONGITUDE = 13.0 File name: cas_enceladus_ssd_spc_south100m_v1.bds MINIMUM_LATITUDE = -90.0 MAXIMUM_LATITUDE = -59.0 MINIMUM_LONGITUDE = -180.0 MAXIMUM_LONGITUDE = 180.0 File name: cas_enceladus_ssd_spc_eq035m_v1.bds MINIMUM_LATITUDE = -9.0 MAXIMUM_LATITUDE = 1.0 MINIMUM_LONGITUDE = 132.0 MAXIMUM_LONGITUDE = 143.0 ******************************************************************************* End.