KPL/PCK \begindata CASSINI_PCK_VERSION = ( '2004-SEP-30' ) \begintext P_constants (PcK) SPICE kernel file ===================================================================== By: Diane Conner (Cassini) 2004 September 30 File contents -------------------------------------------------------- The contents of this file are as follows. - Introductory Information: -- Overview of data content -- Version description -- Disclaimer -- Explanation - Pck Data (keywords = value) - Explanation of formatting of special parameters - Sources Overview of data content ------------------------------------------------------- This file contains the following data: Gravitational Mass Data for the Sun Earth, Venus, Jupiter, Saturn, Uranus, and satellites where available. Orientation constants for the Sun, Earth, Venus, Jupiter, Saturn, Uranus, and satellites. Radii for the Sun, Earth, Venus, Jupiter, Saturn, Uranus, and satellites where available. Ring model for Saturn. Atmospheric model for Titan. Version description -------------------------------------------------------- This file was created for Cassini mission science data analysis. Gravitational mass values are consistent with the values used to reconstruct the spacecraft trajectory for the Earth through Jupiter encounter portion of the mission [13]. Values are consistent with the "Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000." or other sources where more current data is available. [1] Disclaimer -------------------------------------------------------- This constants file may not contain the parameter values that you prefer. Note that this file may be readily modified by you or anyone else. NAIF suggests that you inspect this file visually before proceeding with any critical or extended data processing. Explanation -------------------------------------------------------- The SPICE Toolkit software that uses this file is documented in the SPICE "Required Reading" file pck.req. See the SPICE "Required Reading" file kernel.req for a detailed explanation of the SPICE text kernel file format. The files pck.req and kernel.req are included in the documentation provided with the SPICE Toolkit. This file, which is logically part of the SPICE P-kernel, contains constants used to model the orientation, size and shape of the Sun, planets, and satellites. The orientation models express the direction of the pole and location of the prime meridian of a body as a function of time. The size/shape models ("shape models" for short) represent all bodies as ellipsoids, using two equatorial radii and a polar radius. Spheroids and spheres are obtained when two or all three radii are equal. PcK Data ======================================================= Sun ------------------------------------------------------- Value for the Sun radii is from [2], page K7. BODY10_GM from [13]. \begindata BODY10_GM = ( 132712440017.9870 ) BODY10_RADII = ( 696000. 696000. 696000. ) BODY10_POLE_RA = ( 286.13 0. 0. ) BODY10_POLE_DEC = ( 63.87 0. 0. ) BODY10_PM = ( 84.10 +14.18440 0. ) BODY10_LONG_AXIS = ( 0. ) \begintext Venus ------------------------------------------------------- BODY2_GM and BODY299_GM from [13]. \begindata BODY2_GM = ( 324858.598826460 ) BODY299_GM = ( 324858.598826460 ) BODY299_RADII = ( 6051.8 6051.8 6051.8 ) BODY299_POLE_RA = ( 272.76 0. 0. ) BODY299_POLE_DEC = ( +67.16 0. 0. ) BODY299_PM = ( 160.20 -1.4813688 0. ) BODY299_LONG_AXIS = ( 0. ) \begintext Earth ------------------------------------------------------- BODY3_GM, BODY399_GM from [13]. Northern hemisphere projection of the Earth's magnetic dipole: Coordinates are planetocentric. BODY399_N_GEOMAG_CTR_DIPOLE_LON, BODY399_N_GEOMAG_CTR_DIPOLE_LAT from [3]. \begindata BODY3_GM = ( 403503.233479087 ) BODY399_GM = ( 398600.4328969392 ) BODY399_RADII = ( 6378.14 6378.14 6356.75 ) BODY399_POLE_RA = ( 0. -0.641 0. ) BODY399_POLE_DEC = ( +90. -0.557 0. ) BODY399_PM = ( 190.147 +360.9856235 0. ) BODY399_LONG_AXIS = ( 0. ) BODY3_NUT_PREC_ANGLES = ( 125.045 -1935.5364525000 250.089 -3871.0729050000 260.008 475263.3328725000 176.625 487269.6299850000 357.529 35999.0509575000 311.589 964468.4993100000 134.963 477198.8693250000 276.617 12006.3007650000 34.226 63863.5132425000 15.134 -5806.6093575000 119.743 131.8406400000 239.961 6003.1503825000 25.053 473327.7964200000 ) BODY399_N_GEOMAG_CTR_DIPOLE_LON = ( 288.43 ) BODY399_N_GEOMAG_CTR_DIPOLE_LAT = ( 79.54 ) \begintext Jupiter ------------------------------------------------------- BODY5_GM and BODY599_GM from [13]. \begindata BODY5_GM = ( 126712767.8577960 ) BODY599_GM = ( 126686536.9610660 ) BODY599_RADII = ( 71492. 71492. 66854. ) BODY599_POLE_RA = ( 268.05 -0.009 0. ) BODY599_POLE_DEC = ( +64.49 +0.003 0. ) BODY599_PM = ( 284.95 870.5366420 0. ) BODY599_LONG_AXIS = ( 0. ) BODY5_NUT_PREC_ANGLES = ( 73.32 91472.9 24.62 45137.2 283.90 4850.7 355.80 1191.3 119.90 262.1 229.80 64.3 352.35 2382.6 113.35 6070.0 146.64 182945.8 49.24 90274.4 ) \begintext Saturn ------------------------------------------------------- BODY6_GM and BODY669_GM from [13]. The first seven angles given in NUT_PREC are the angles S1 through S7 from [1]; the eighth and ninth angles are 2*S1 and 2*S2, respectively. Ring models are from [5], [10] and [11]. F Ring Data are from [8]. MIMI zone reflects the old flight rule for MIMI INCA, +/- 30000 km thickness inside of 8.74 Rs. \begindata BODY6_GM = ( 37940629.764 ) BODY699_GM = ( 37931267.73 ) BODY699_RADII = ( 60268. 60268. 54364. ) BODY699_POLE_RA = ( 40.589 -0.036 0. ) BODY699_POLE_DEC = ( +83.537 -0.004 0. ) BODY699_PM = ( 38.90 +810.7939024 0. ) BODY699_LONG_AXIS = ( 0. ) BODY699_JCOEF = ( 0.0, 0.016298, 0.0, -0.000915, 0.0, 0.000103 ) BODY699_CCOEF = ( 0.0, 0.0, 0.00000070 ) BODY699_SCOEF = ( 0.0, 0.0, -0.00000020 ) BODY6_NUT_PREC_ANGLES = ( 353.32 75706.7 28.72 75706.7 177.40 -36505.5 300.00 -7225.9 316.45 506.2 345.20 -1016.3 29.80 -52.1 706.64 151413.4 57.44 151413.4 ) BODY699_RING1_NAME = 'A Ring' BODY699_RING1 = (122170.0 136780.0 0.1 0.1 0.5) BODY699_RING1_1_NAME = 'Encke Gap' BODY699_RING1_1 = (133405.0 133730.0 0.0 0.0 0.0) BODY699_RING2_NAME = 'Cassini Division' BODY699_RING2 = (117580.0 122170.0 0.0 0.0 0.0) BODY699_RING3_NAME = 'B Ring' BODY699_RING3 = (92000.0 117580.0 0.1 0.1 1.5) BODY699_RING4_NAME = 'C Ring' BODY699_RING4 = (74510.0 92000.0 0.1 0.1 0.1) BODY699_RING5_NAME = 'D Ring' BODY699_RING5 = (66970.0 74510.0 0.1 0.1 0.00001) BODY699_RING6_NAME = 'E ring' BODY699_RING6_A = (189870.0 256900.0 9000.0 9000.0 0.000003) BODY699_RING6_B = (256900.0 420000.0 9000.0 17000.0 0.000003) BODY699_RING7_NAME = 'F Ring' BODY699_RING7 = (140180.0 140270.0 6.5 6.5 0.1) BODY699_RING7_FCENTER = (140223.7, 0.00254, 24.1, 2.7001, 0.0065, 16.1, -2.6876) BODY699_RING8_NAME = 'G Ring' BODY699_RING8 = (165000.0 176000.0 280.0 280.0 0.000001) BODY699_MIMI_DUST_ZONE = ( 0.0 527284.2 60000.0 60000.0 ) \begintext Uranus ------------------------------------------------------- BODY7_GM value from [13]. BODY799_GM value from [7]. \begindata BODY7_GM = ( 5794549.007071874 ) BODY799_GM = ( 5793939.0 ) BODY799_RADII = ( 25559. 25559. 24973. ) BODY799_POLE_RA = ( 257.311 0. 0. ) BODY799_POLE_DEC = ( -15.175 0. 0. ) BODY799_PM = ( 203.81 -501.1600928 0. ) BODY799_LONG_AXIS = ( 0. ) BODY7_NUT_PREC_ANGLES = ( 115.75 +54991.87 141.69 +41887.66 135.03 +29927.35 61.77 +25733.59 249.32 +24471.46 43.86 +22278.41 77.66 +20289.42 157.36 +16652.76 101.81 +12872.63 138.64 +8061.81 102.23 -2024.22 316.41 2863.96 304.01 -51.94 308.71 -93.17 340.82 -75.32 259.14 -504.81 204.46 -4048.44 632.82 5727.92 ) \begintext Earth Moon ------------------------------------------------------- BODY301_GM from [13]. \begindata BODY301_GM = ( 4902.800582147764 ) BODY301_RADII = ( 1737.4 1737.4 1737.4 ) BODY301_POLE_RA = ( 269.9949 0.0031 0. ) BODY301_POLE_DEC = ( 66.5392 0.0130 0. ) BODY301_PM = ( 38.3213 13.17635815 -1.4D-12 ) BODY301_LONG_AXIS = ( 0. ) BODY301_NUT_PREC_RA = ( -3.8787 -0.1204 +0.0700 -0.0172 0. +0.0072 0. 0. 0. -0.0052 0. 0. +0.0043 ) BODY301_NUT_PREC_DEC = ( 1.5419 0.0239 -0.0278 +0.0068 0. -0.0029 +0.0009 0. 0. +0.0008 0. 0. -0.0009 ) BODY301_NUT_PREC_PM = ( 3.5610 +0.1208 -0.0642 +0.0158 +0.0252 -0.0066 -0.0047 -0.0046 +0.0028 +0.0052 +0.0040 +0.0019 -0.0044 ) \begintext Satellites of Jupiter ------------------------------------------------------- GM values from [6] unless noted. IO ------------------------------------------------- \begindata BODY501_GM = ( 5959.916 ) BODY501_RADII = ( 1829.4 1819.3 1815.7 ) BODY501_POLE_RA = ( 268.05 -0.009 0. ) BODY501_POLE_DEC = ( +64.50 +0.003 0. ) BODY501_PM = ( 200.39 +203.4889538 0. ) BODY501_LONG_AXIS = ( 0. ) BODY501_NUT_PREC_RA = ( 0. 0. +0.094 +0.024 ) BODY501_NUT_PREC_DEC = ( 0. 0. +0.040 +0.011 ) BODY501_NUT_PREC_PM = ( 0. 0. -0.085 -0.022 ) \begintext Europa ------------------------------------------------- \begindata BODY502_GM = ( 3202.739 ) BODY502_RADII = ( 1564.13 1561.23 1560.93 ) BODY502_POLE_RA = ( 268.08 -0.009 0. ) BODY502_POLE_DEC = ( +64.51 +0.003 0. ) BODY502_PM = ( 36.022 +101.3747235 0. ) BODY502_LONG_AXIS = ( 0. ) BODY502_NUT_PREC_RA = ( 0. 0. 0. +1.086 +0.060 +0.015 +0.009 ) BODY502_NUT_PREC_DEC = ( 0. 0. 0. +0.468 +0.026 +0.007 +0.002 ) BODY502_NUT_PREC_PM = ( 0. 0. 0. -0.980 -0.054 -0.014 -0.008 ) \begintext Ganymede ------------------------------------------------- \begindata BODY503_GM = ( 9887.834 ) BODY503_RADII = ( 2632.4 2632.29 2632.35 ) BODY503_POLE_RA = ( 268.20 -0.009 0. ) BODY503_POLE_DEC = ( +64.57 +0.003 0. ) BODY503_PM = ( 44.064 +50.3176081 0. ) BODY503_LONG_AXIS = ( 0. ) BODY503_NUT_PREC_RA = ( 0. 0. 0. -0.037 +0.431 +0.091 ) BODY503_NUT_PREC_DEC = ( 0. 0. 0. -0.016 +0.186 +0.039 ) BODY503_NUT_PREC_PM = ( 0. 0. 0. +0.033 -0.389 -0.082 ) \begintext Callisto ------------------------------------------------- \begindata BODY504_GM = ( 7179.289 ) BODY504_RADII = ( 2409.4 2409.2 2409.3 ) BODY504_POLE_RA = ( 268.72 -0.009 0. ) BODY504_POLE_DEC = ( +64.83 +0.003 0. ) BODY504_PM = ( 259.51 +21.5710715 0. ) BODY504_LONG_AXIS = ( 0. ) BODY504_NUT_PREC_RA = ( 0. 0. 0. 0. -0.068 +0.590 0. +0.010 ) BODY504_NUT_PREC_DEC = ( 0. 0. 0. 0. -0.029 +0.254 0. -0.004 ) BODY504_NUT_PREC_PM = ( 0. 0. 0. 0. +0.061 -0.533 0. -0.009 ) \begintext Amalthea ------------------------------------------------- \begindata BODY505_GM = ( 0.138 ) BODY505_RADII = ( 125. 73. 64. ) BODY505_POLE_RA = ( 268.05 -0.009 0. ) BODY505_POLE_DEC = ( +64.49 +0.003 0. ) BODY505_PM = ( 231.67 +722.6314560 0. ) BODY505_LONG_AXIS = ( 0. ) BODY505_NUT_PREC_RA = ( -0.84 0. 0. 0. 0. 0. 0. 0. 0.01 0. ) BODY505_NUT_PREC_DEC = ( -0.36 0. 0. 0. 0. 0. 0. 0. 0. 0. ) BODY505_NUT_PREC_PM = ( 0.76 0. 0. 0. 0. 0. 0. 0. -0.01 0. ) \begintext Only mean radii are available in the 2000 IAU report for bodies 506-513. \begintext Himalia ------------------------------------------------- BODY506_GM from [14]. \begindata BODY506_GM = ( 0.45 ) BODY506_RADII = ( 85 85 85 ) \begintext Elara ------------------------------------------------- BODY506_GM from [14]. \begindata BODY507_GM = ( 0.058 ) BODY507_RADII = ( 40 40 40 ) \begintext Pasiphae ------------------------------------------------- BODY506_GM from [14]. \begindata BODY508_GM = ( 0.020 ) BODY508_RADII = ( 18 18 18 ) \begintext Sinope ------------------------------------------------- BODY506_GM from [14]. \begindata BODY509_GM = ( 0.0050 ) BODY509_RADII = ( 14 14 14 ) \begintext Lysithea ------------------------------------------------- BODY506_GM from [14]. \begindata BODY510_GM = ( 0.0042 ) BODY510_RADII = ( 12 12 12 ) \begintext Carme ------------------------------------------------- BODY506_GM from [14]. \begindata BODY511_GM = ( 0.0088 ) BODY511_RADII = ( 15 15 15 ) \begintext Ananke ------------------------------------------------- BODY506_GM from [14]. \begindata BODY512_GM = ( 0.0020 ) BODY512_RADII = ( 10 10 10 ) \begintext Leda ------------------------------------------------- BODY506_GM from [14]. \begindata BODY513_GM = ( 0.00073 ) BODY513_RADII = ( 5 5 5 ) \begintext Thebe ------------------------------------------------- BODY506_GM from [14]. \begindata BODY514_GM = ( 0.10 ) BODY514_RADII = ( 58 49 42 ) BODY514_POLE_RA = ( 268.05 -0.009 0. ) BODY514_POLE_DEC = ( 64.49 +0.003 0. ) BODY514_PM = ( 8.56 +533.7004100 0. ) BODY514_LONG_AXIS = ( 0. ) BODY514_NUT_PREC_RA = ( 0. -2.11 0. 0. 0. 0. 0. 0. 0. +0.04 ) BODY514_NUT_PREC_DEC = ( 0. -0.91 0. 0. 0. 0. 0. 0. 0. +0.01 ) BODY514_NUT_PREC_PM = ( 0. +1.91 0. 0. 0. 0. 0. 0. 0. -0.04 ) \begintext Adrastea ------------------------------------------------- BODY506_GM from [14]. \begindata BODY515_GM = ( 0.0005 ) BODY515_RADII = ( 10 8 7 ) BODY515_POLE_RA = ( 268.05 -0.009 0. ) BODY515_POLE_DEC = ( 64.49 +0.003 0. ) BODY515_PM = ( 33.29 +1206.9986602 0. ) BODY515_LONG_AXIS = ( 0. ) \begintext Metis ------------------------------------------------- Mean Radius was used since the 2000 IAU report contained no value for the Along orbit equatorial radius. BODY516_LONG_AXIS value from [4]. BODY506_GM from [14]. \begindata BODY516_GM = ( 0.008 ) BODY516_RADII = ( 21.5 21.5 21.5 ) BODY516_POLE_RA = ( 268.05 -0.009 0. ) BODY516_POLE_DEC = ( 64.49 +0.003 0. ) BODY516_PM = ( 346.09 +1221.2547301 0. ) BODY516_LONG_AXIS = ( 0. ) \begintext Satellites of Saturn ----------------------------------------------------------- GM values from [9] unless noted. Mimas ------------------------------------------------- BODY601_GM from [13] \begindata BODY601_GM = ( 2.5 ) BODY601_RADII = ( 209.1 196.2 191.4 ) BODY601_POLE_RA = ( 40.66 -0.036 0. ) BODY601_POLE_DEC = ( +83.52 -0.004 0. ) BODY601_PM = ( 337.46 +381.9945550 0. ) BODY601_LONG_AXIS = ( 0. ) BODY601_NUT_PREC_RA = ( 0. 0. +13.56 0. 0. 0. 0. 0. 0. ) BODY601_NUT_PREC_DEC = ( 0. 0. -1.53 0. 0. 0. 0. 0. 0. ) BODY601_NUT_PREC_PM = ( 0. 0. -13.48 0. -44.85 0. 0. 0. 0. ) \begintext Enceladus ------------------------------------------------- BODY602_GM from [13]. \begindata BODY602_GM = ( 4.9 ) BODY602_RADII = ( 256.3 247.3 244.6 ) BODY602_POLE_RA = ( 40.66 -0.036 0. ) BODY602_POLE_DEC = ( +83.52 -0.004 0. ) BODY602_PM = ( 2.82 +262.7318996 0. ) BODY602_LONG_AXIS = ( 0. ) \begintext Tethys ------------------------------------------------- BODY603_GM from [13]. \begindata BODY603_GM = ( 41.808 ) BODY603_RADII = ( 535.6 528.2 525.8 ) BODY603_POLE_RA = ( 40.66 -0.036 0. ) BODY603_POLE_DEC = ( +83.52 -0.004 0. ) BODY603_PM = ( 10.45 +190.6979085 0. ) BODY603_LONG_AXIS = ( 0. ) BODY603_NUT_PREC_RA = ( 0. 0. 0. +9.66 0. 0. 0. 0. 0. ) BODY603_NUT_PREC_DEC = ( 0. 0. 0. -1.09 0. 0. 0. 0. 0. ) BODY603_NUT_PREC_PM = ( 0. 0. 0. -9.60 +2.23 0. 0. 0. 0. ) \begintext Dione ------------------------------------------------- BODY604_GM from [13]. \begindata BODY604_GM = ( 73.156 ) BODY604_RADII = ( 560. 560. 560. ) BODY604_POLE_RA = ( 40.66 -0.036 0. ) BODY604_POLE_DEC = ( +83.52 -0.004 0. ) BODY604_PM = ( 357.00 +131.5349316 0. ) BODY604_LONG_AXIS = ( 0. ) \begintext Rhea ------------------------------------------------- BODY605_GM from [13]. \begindata BODY605_GM = ( 154.000 ) BODY605_RADII = ( 764. 764. 764. ) BODY605_POLE_RA = ( 40.38 -0.036 0. ) BODY605_POLE_DEC = ( +83.55 -0.004 0. ) BODY605_PM = ( 235.16 +79.6900478 0. ) BODY605_LONG_AXIS = ( 0. ) BODY605_NUT_PREC_RA = ( 0. 0. 0. 0. 0. +3.10 0. 0. 0. ) BODY605_NUT_PREC_DEC = ( 0. 0. 0. 0. 0. -0.35 0. 0. 0. ) BODY605_NUT_PREC_PM = ( 0. 0. 0. 0. 0. -3.08 0. 0. 0. ) \begintext Titan ------------------------------------------------- BODY606_GM from [13]. \begindata BODY606_GM = ( 8978.2 ) BODY606_RADII = ( 2575. 2575. 2575. ) BODY606_POLE_RA = ( 36.41 -0.036 0. ) BODY606_POLE_DEC = ( +83.94 -0.004 0. ) BODY606_PM = ( 189.64 +22.5769768 0. ) BODY606_LONG_AXIS = ( 0. ) BODY606_NUT_PREC_RA = ( 0. 0. 0. 0. 0. 0. +2.66 0. 0. ) BODY606_NUT_PREC_DEC = ( 0. 0. 0. 0. 0. 0. -0.30 0. 0. ) BODY606_NUT_PREC_PM = ( 0. 0. 0. 0. 0. 0. -2.64 0. 0. ) BODY606_ATMOSPHERE = ( 175.0 10.0 0.000006350 11400.0 76.0 0.000000513 8030.0 -429.0 0.000073500 15000.0 44.0 ) \begintext Hyperion ------------------------------------------------- While Hyperion's spin state is chaotic, Voyager and ground-based observations suggest some states are common (Thomas et al 1995, Icarus 117, 128-148). The spin pole orientation is from the Voyager observations; both the spin pole orientation and spin rate will probably differ during Cassini's mission. Hyperion orientation from Peter Thomas at Cornell University. BODY607_RADII from [1]. BODY607_GM from [13]. \begindata BODY607_GM = ( 0.990000000000000 ) BODY607_RADII = ( 164. 130. 107. ) BODY607_POLE_RA = ( 226. 0 0 ) BODY607_POLE_DEC = ( 35. 0 0 ) BODY607_PM = ( 20.02 72.0 0 ) BODY607_LONG_AXIS = ( 0. ) \begintext Iapetus ------------------------------------------------- BODY608_GM from [13]. \begindata BODY608_GM = ( 106.0 ) BODY608_RADII = ( 718. 718. 718. ) BODY608_POLE_RA = ( 318.16 -3.949 0. ) BODY608_POLE_DEC = ( +75.03 -1.143 0. ) BODY608_PM = ( 350.20 +4.5379572 0. ) BODY608_LONG_AXIS = ( 0. ) \begintext Phoebe ------------------------------------------------- BODY609_GM from [13]. BODY609_PM from [12]. \begindata BODY609_GM = ( 0.4800000000000000 ) BODY609_RADII = ( 115. 110. 105. ) BODY609_POLE_RA = ( 355.00 0. 0. ) BODY609_POLE_DEC = ( +68.70 0. 0. ) BODY609_PM = ( 178.58 +931.639 0. ) BODY609_LONG_AXIS = ( 0. ) \begintext Janus ------------------------------------------------- \begindata BODY610_GM = ( 0.1284 ) BODY610_RADII = ( 97. 95. 77. ) BODY610_POLE_RA = ( 40.58 -0.036 0. ) BODY610_POLE_DEC = ( 83.52 -0.004 0. ) BODY610_PM = ( 58.83 +518.2359876 0. ) BODY610_LONG_AXIS = ( 0. ) BODY610_NUT_PREC_RA = ( 0. -1.623 0. 0. 0. 0. 0. 0. +0.023 ) BODY610_NUT_PREC_DEC = ( 0. -0.183 0. 0. 0. 0. 0. 0. +0.001 ) BODY610_NUT_PREC_PM = ( 0. +1.613 0. 0. 0. 0. 0. 0. -0.023 ) \begintext Epimetheus ------------------------------------------------- \begindata BODY611_GM = ( .0357 ) BODY611_RADII = ( 69. 55. 55. ) BODY611_POLE_RA = ( 40.58 -0.036 0. ) BODY611_POLE_DEC = ( 83.52 -0.004 0. ) BODY611_PM = ( 293.87 +518.4907239 0. ) BODY611_LONG_AXIS = ( 0. ) BODY611_NUT_PREC_RA = ( -3.153 0. 0. 0. 0. 0. 0. +0.086 0. ) BODY611_NUT_PREC_DEC = ( -0.356 0. 0. 0. 0. 0. 0. +0.005 0. ) BODY611_NUT_PREC_PM = ( +3.133 0. 0. 0. 0. 0. 0. -0.086 0. ) \begintext Helene ------------------------------------------------- Mean Radius was used since the 2000 IAU report contained no value for the Subplanetary equatorial radius. BODY612_GM from [14]. \begindata BODY612_GM = ( .0017 ) BODY612_RADII = ( 16 16 16 ) BODY612_POLE_RA = ( 40.85 -0.036 0. ) BODY612_POLE_DEC = ( 83.34 -0.004 0. ) BODY612_PM = ( 245.12 +131.6174056 0. ) BODY612_LONG_AXIS = ( 0. ) \begintext Telesto ------------------------------------------------- BODY612_GM from [14]. \begindata BODY613_GM = ( .00048 ) BODY613_RADII = ( 15 12.5 7.5 ) BODY613_POLE_RA = ( 50.51 -0.036 0. ) BODY613_POLE_DEC = ( 84.06 -0.004 0. ) BODY613_PM = ( 56.88 +190.6979332 0. ) BODY613_LONG_AXIS = ( 0. ) \begintext Calypso ------------------------------------------------- BODY612_GM from [14]. \begindata BODY614_GM = ( 0.00024 ) BODY614_RADII = ( 15 8 8 ) BODY614_POLE_RA = ( 36.41 -0.036 0. ) BODY614_POLE_DEC = ( 85.04 -0.004 0. ) BODY614_PM = ( 153.51 +190.6742373 0. ) BODY614_LONG_AXIS = ( 0. ) \begintext Atlas ------------------------------------------------- BODY612_GM from [14]. \begindata BODY615_GM = ( 0.00072 ) BODY615_RADII = ( 18.5 17.2 13.5 ) BODY615_POLE_RA = ( 40.58 -0.036 0. ) BODY615_POLE_DEC = ( 83.53 -0.004 0. ) BODY615_PM = ( 137.88 +598.3060000 0. ) BODY615_LONG_AXIS = ( 0. ) \begintext Prometheus ------------------------------------------------- BODY612_GM from [14]. \begindata BODY616_GM = ( 0.022 ) BODY616_RADII = ( 74 50 34 ) BODY616_POLE_RA = ( 40.58 -0.036 0. ) BODY616_POLE_DEC = ( 83.53 -0.004 0. ) BODY616_PM = ( 296.14 +587.289000 0. ) BODY616_LONG_AXIS = ( 0. ) \begintext Pandora ------------------------------------------------- BODY612_GM from [14]. \begindata BODY617_GM = ( 0.013 ) BODY617_RADII = ( 55 44 31 ) BODY617_POLE_RA = ( 40.58 -0.036 0. ) BODY617_POLE_DEC = ( 83.53 -0.004 0. ) BODY617_PM = ( 162.92 +572.7891000 0. ) BODY617_LONG_AXIS = ( 0. ) \begintext Pan ------------------------------------------------- For Pan, only a mean radius is given in the IAU report. BODY612_GM from [14]. \begindata BODY618_GM = ( 0.00018 ) BODY618_RADII = ( 10 10 10 ) BODY618_POLE_RA = ( 40.6 -0.036 0. ) BODY618_POLE_DEC = ( 83.5 -0.004 0. ) BODY618_PM = ( 48.8 +626.0440000 0. ) BODY618_LONG_AXIS = ( 0. ) \begintext ------------------------------------------------------ ADDITIONAL CONSTANTS REQUIRED BY CASSINI PDT The Astronomical Unit The value of k and the relation between k and the GM of the Sun are from the "Explanatory Supplement to the Astronomical Almanac," 1992. P. 696. The astronomical unit AU is given in kilometers. \begindata AU = ( 149597870.7 ) \begintext The GM of the Sun was derived from the formula 3 2 2 GM = AU k / D Sun where k is the Gaussian gravitational constant 0.01720209895 D is 86400 ephemeris seconds, and AU is given in units of kilometers. Note to PDT users: -------------------------------------------------------- Note that GM values >= 1.0 are packaged as is into 7CONIC_VEC commands for AACS to propagate the body's ephemeris. For GM values < 1.0, the value in the G_MASS parameter of the 7CONIC_VEC command is set to 1.0. One is the minimum value for the G_MASS parameter. The resetting of the G_MASS parameter to the minimum acceptable where the actual GM is < 1.0 is acceptable since CAS will not pass close enough to any of the affected bodies for the gravitational mass to have an effect. For CASPER users: ---------------------------------------------------------------------- \begindata BODY601_GM/PRIMARY = ( 6.59087D-08 ) BODY602_GM/PRIMARY = ( 1.29181D-07 ) BODY603_GM/PRIMARY = ( 1.1022D-06 ) BODY604_GM/PRIMARY = ( 1.92865D-06 ) BODY605_GM/PRIMARY = ( 4.05998D-06 ) BODY606_GM/PRIMARY = ( 2.36697D-04 ) BODY607_GM/PRIMARY = ( 2.60998D-08 ) BODY608_GM/PRIMARY = ( 2.79453D-06 ) BODY609_GM/PRIMARY = ( 1.26545D-08 ) BODY610_GM/PRIMARY = ( 3.38507D-09 ) BODY611_GM/PRIMARY = ( 9.41176D-10 ) BODY612_GM/PRIMARY = ( 4.48179D-11 ) BODY613_GM/PRIMARY = ( 1.26545D-11 ) BODY614_GM/PRIMARY = ( 6.32723D-12 ) BODY615_GM/PRIMARY = ( 1.89817D-11 ) BODY616_GM/PRIMARY = ( 5.79996D-10 ) BODY617_GM/PRIMARY = ( 3.42725D-10 ) BODY618_GM/PRIMARY = ( 4.74543D-12 ) \begintext -------- FORMATTING FOR SPECIAL PARAMETERS BODYNNN_GM GM in km^3/s^2 BODYNNN_ATMOSPHERE Exponential atmospheric model in the form of one set of two values To, f, followed by any number of sets of three numbers Do, K, Zo. The atmospheric density in g/cm3 can be calculated as follows: Z = height above surface (km) R = radius of body (km) T = thermospheric temperature (K) = To + f * sigma, where sigma is the number of standard deviations (conservatism) desired. If f > 0, positive sigma will result in a hotter thermosphere and higher density. H = scale height of atmosphere (km) = T * ( R + Z ) / K (K is a curve-fit parameter with units of degrees K) D = density (g/cm3) = Do * exp( - ( Z - Zo ) / H ) If there are more than one set of Do, K, Zo, sum each value to get the total atmospheric density. BODYNNN_RING* The ring identification scheme is numeric with keyword-associated names. The defnition of a ring is in a set of keywords. The BODYNNN_RING... keyword set includes 1) a required NAME keyword (BODYNNN_RING_NAME), 2) either a complete ring keyword (BODYNNN_RING) or a set of segmented ring keywords (BODYNNN_RING_), and 3) optional embedded ringlet/gap keywords (BODYNNN_RING_) with required names (BODYNNN_RING__NAME). The total number of rings (BODYNNN_RING) that can be defined is from 01 to 99. A complete ring can be segmented (BODYNNN_RING_) in upto 26 (A-Z) sub-segments. Embedded ringlets/gaps (BODYNNN_RING_) can be defined from 1 to 99. Ring geometry is defined in the form of one set of R1, R2, Z1, Z2, OD where R1 and R2 are inner and outer radii respectively of the ring (in kilometers), Z1 and Z2 are the vertical heights of the ring at R1 and R2 respectively (also in km, equal to one-half of the total thickness of the ring), and OD is the average optical depth of the ring sub-segment/gap across R1 to R2. A complex ring thickness model is pieced together by sub-segmenting Rs, Zs, & ODs; each sub-segment is uniquely numbered. BODYNNN_*COEF Where * = J, C, or S. These coefficients are the normalized gravity field coefficients. J's are 1 to N, C's and S's have two indexes. Index 1 goes from 1 to N, and Index 2 goes from 1 to (Index 1). E.g. C11, C21, C22, C31, C32, C33, C41, etc. BODY699_RING7_FCENTER Elliptical orbital characteristics for the F Ring: The array items (and units) are (in order): SEMIMAJOR_AXIS (km) ECCENTRICITY (degrees) LONGITUDE_PERICENTER_EPOCH (degrees) PERICENTER_PRECESSION_RATE (degrees) INCLINATION (degrees) LONGITUDE_ASCENDING_NODE_EPOCH (degrees) NODAL_REGRESSION_RATE (degrees). The epoch for the elements is J2000 (noon UTC on 1/1/2000) at the ring (i.e., with no light-time correction). Longitudes are measured in the prograde direction from the ascending node of Saturn's equatorial plane on Earth's J2000 equator. Sources -------------------------------------------------------- The sources for the constants listed in this file are: 1. Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E., Bergh, C. de, Lieske, J.H., Oberst, J., Simon, J.L., Standish, E.M., Stooke, P., and Thomas, P.C. (2002). "Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000," Celestial Mechanics and Dynamical Astronomy, v.82, Issue 1, pp. 83-111. 2. Nautical Almanac Office, United States Naval Observatory and H.M. Nautical Almanac Office, Rutherford Appleton Laboratory (2005). "The Astronomical Almanac for the Year 2002," U.S. Government Printing Office, Washington, D.C.: and The Stationary Office, London. 3. ESA/ESTEC Space Environment Information System (SPENVIS) (2003). Web page: "Dipole approximations of the geomagnetic field." . 4. "Revised rotation angle for Jupiter satellite 516 Metis," by J. H. Lieske. JPL IOM 312.F-97-059. September 16, 1997. 5. Showalter, Mark R. "Properties of Saturn's E and G Rings from the 1995 Ring Plane Crossings", presented at Ames ring hazard workshop, 25 January 1996. 6. Jacobson, R. A. 2003b. private communication of constants used in the JUP230 ephemeris 7. Jacobson, R. A., Campbell, J. K., Taylor, A. H., and Synnott, S. P. 1992. "The masses of Uranus and its major satellites from Voyager tracking data and Earth-based Uranian satellite data", Astronomical Journal 103, 2068-2078. 8. Bosh, A. S., et. al., (2002) Icarus 157, 57. 9. Jacobson, R. A., 1996, "Orbits of the Saturnian Satellites from Earthbased and Voyager Observations", Blulletin of the American Ast5ronmical Society 28(3), 1185. 10. Cuzzi, J. N., J. J. Lissauer, L. W. Esposito, J. B. Holberg, E. A. Marouf, G. L. Tyler, and A. Bouschot 1984. "Saturn's rings: Properties and processes." In Planetary Rings, (R. Greenberg and A. Brahic, Eds.), University of Arizona Press, Tucson, pp. 73-199. 11. HST High-Resolution Backscatter Image of Saturn's G Ring Jack J. Lissauer, Richard G. French Icarus, Vol. 146, No. 1, Jul 2000, pp. 12-18. 12. Bauer, Simonelli, Buratti, IAU Circular 8279, 1/30/2004; re-reduced by Owen 2/5/2004. 13. Cassini Navigation Team OD solution used to generate Earth - Jupiter spacecraft trajectory reconstruction file 010420R_SCPSE_EP1_JP83 14. NASA/JPL Web page: "Natural Satellite Physical Parameters", 2004 September 22