KPL/FK Cassini MIMI Frame Definitions Kernel ============================================================================== This frame kernel contains frames that are specific to the Cassini MIMI detector. Version and Date ---------------------------------------------------------- The TEXT_KERNEL_ID stores version information of loaded project text kernels. Each entry associated with the keyword is a string that consists of four parts: the kernel name, version, entry date, and type. For example, the ISS I-kernel might have an entry as follows: TEXT_KERNEL_ID += 'CASSINI_ISS V0.0.0 29-SEPTEMBER-1999 IK' | | | | | | | | KERNEL NAME <-------+ | | | | | V VERSION <-------+ | KERNEL TYPE | V ENTRY DATE Cassini MIMI Frame Kernel Version: \begindata TEXT_KERNEL_ID += 'CASSINI_MIMI_FRAMES V2.0.1 02-Jul-2018 FK' \begintext Version 2.0.2 -- September 26, 2018 -- Ryan Poffenbarger -- corrected description of CASSINI_MIMI_PROF_TITAN to match the frame definition -- added frames to complete the frame tree visualization, and corrected some errors with its heirarchy -- appended 'cas_' to the beginning of this file's name Version 2.0.1 -- July 2, 2018 -- Boris Semenov -- corrected frame ID in the CASSINI_MIMI_ECLIPJ2000 definition keywords (-82933 -> -82963) -- in the "Cassini MIMI Frames" section, corrected some entries in the frames summary table and added key attributes and old names/IDs tables -- added a note to the frames hierarchy section stating that the frame tree is incomplete -- added a note to the CASSINI_MIMI_PROF_TITAN section stating that the description and definition of this frame given in the section do not match -- re-wrapped a few paragraphs with long lines -- made minor formatting changes (replaced TABs, adjusted indentation, added/removed white space, etc) -- spell-checked -- updated TEXT_KERNEL_ID string Version 2.0.0 -- May 22, 2018 -- Ryan Poffenbarger -- Changed all frame names and ids in accordance with recommendations made by Boris Semenov -- Changed a redundant SZM_PROMETHEUS definition to the proper SZM_TELESTO -- Changed centers in SZM_IO and SZM_MOON from 699 to 599 and 399 respectively Version 1.1.8 -- Feb 1, 2013 -- Scott Turner -- Added CASSINI_SUNJ2000 frame at Jim Carbary's request. Version 1.1.7 -- Apr 31, 2012 -- Martha Kusterer and Jon Vandegriff -- Added SKR N and S frames from L. Lamy at Meudon CASSINI_SKR_SLSM_SOUTH and CASSINI_SKR_SLSM_NORTH Version 1.1.6 -- Mar 15, 2012 -- Martha Kusterer -- Added CASSINI_SATURN_SKR3_LOCK, CASSINI_SATURN_SKR4S_LOCK, and CASSINI_SATURN_SKR4N_LOCK Version 1.1.5 -- Mar 14, 2012 -- Martha Kusterer -- Changed CASSINI_SATURN_KM_RAD to point to CASSINI_SKR_SLS4_SOUTH, and changed CASSINI_SATURN_SKR_LOCK to use CASSINI_SKR_SLS4_SOUTH. Version 1.1.4 -- Mar 01, 2012 -- Martha Kusterer -- Added frames CASSINI_MIMI_MAG_RTN and CASSINI_MIMI_MAG_KRTP Version 1.1.3 -- Nov 4, 2011 -- Martha Kusterer -- Added frames CASSINI_JUPITER_EQU_SOLAR and CASSINI_JUPITER_CENTERED Version 1.1.2 -- July 19, 2011 -- Martha Kusterer -- Added frames CASSINI_SKR_SLS4_SOUTH and CASSINI_SKR_SLS4_NORTH Version 1.1.1 -- July 30, 2010 -- Martha Kusterer -- Changed name of XINCA_SC2SATNRML_SPIN_PLANE to CASSINI_SC2SAT_SPIN_PLN because it was too long. Limit is 32 Version 1.1.0 -- March 23, 2010 -- Martha Kusterer -- Added the CASSINI_SC2SAT_SPIN_PLN frame. Removed XINCA_SATURN_RING_BELOW and XINCA_SATURN_RING_ABOVE and added some more comments to the XINCA frames. Version 1.0.9 -- February 19, 2010 -- Martha Kusterer -- Fixed the CASSINI_SZS_XY_PLANE frame definition with Scott's help :) Version 1.0.8 -- November 4, 2009 -- Martha Kusterer -- Added the CASSINI_SZS_XY_PLANE frame definition Version 1.0.7 -- October 21 2009 -- Martha Kusterer -- Added the ISMF_X frame definition Version 1.0.6 -- August 13, 2009 -- Scott Turner -- Added the ISMF frame definition Version 1.0.5 -- May 14, 2009 -- Martha Kusterer -- Added the CASSINI_MIMI_ECLIPJ2000 frame Version 1.0.4 -- April 9, 2008 -- Martha Kusterer -- Added the CASSINI_COROT_ENCELADUS frame Version 1.0.3 -- March 28, 2008 -- Martha Kusterer -- Added the GSE frame Version 1.0.2 -- December 14, 2007 -- Martha Kusterer -- Edited the Profile-Titan System Frame Version 1.0.1 -- November 13, 2007 -- Martha Kusterer -- Added MIMI CRTN Frame, MIMI_LEMMS_AA Frame, Profile-Titan System Frame Version 1.0.0 -- November 5, 2007 -- Scott Turner -- CASSINI_SATURN_KM_RAD is now an alias pointing to the latest release of the RPWS SKR model. -- ID code changes were made to provide a coupled range of codes for use with the SKR frames. -- Added CASSINI_SKR_SLS1, CASSINI_SKR_SLS2, CASSINI_SKR_SLS3 to capture the various SKR style frames and establish a convention for future releases by the RPWS team. Version 0.9.9 -- April 4, 2007 -- Martha Kusterer -- Added XINCA_SATURN_RING_ABOVE and XINCA_SATURN_RING_BELOW reference frame definition for suppporting testing projecting in ring plane software. Version 0.9.8 -- February 9, 2007 -- Scott Turner -- Added CASSINI_SATURN_SKR_LOCK reference frame definition for suppporting INCA corotating plasma analysis. Version 0.9.7 -- October 11, 2006 -- Scott Turner -- Updated the CASSINI_SATURN_KM_RAD frame definition to agree with the latest release of the GRL paper. Version 0.9.6 -- July 25, 2006 -- Scott Turner and Martha Kusterer -- Added CASSINI_SZM_TITAN dynamic frame definition. -- Added CASSINI_SATURN_KM_RAD dynamic frame definiton. -- Added CASSINI_SZM_ATLAS dynamic frame definition. -- Added CASSINI_SZM_CALYPSO dynamic frame definition. -- Added CASSINI_SZM_DIONE dynamic frame definition. -- Added CASSINI_SZM_ENCELADUS dynamic frame definition. -- Added CASSINI_SZM_EPIMETHEUS dynamic frame definition. -- Added CASSINI_SZM_HELENE dynamic frame definition. -- Added CASSINI_SZM_HYPERION dynamic frame definition. -- Added CASSINI_SZM_JANUS dynamic frame definition. -- Added CASSINI_SZM_IAPETUS dynamic frame definition. -- Added CASSINI_SZM_MIMAS dynamic frame definition. -- Added CASSINI_SZM_RHEA dynamic frame definition. -- Added CASSINI_SZM_TETHYS dynamic frame definition. -- Added CASSINI_SZM_PAN dynamic frame definition. -- Added CASSINI_SZM_PANDORA dynamic frame definition. -- Added CASSINI_SZM_PHOEBE dynamic frame definition. -- Added CASSINI_SZM_PROMETHEUS dynamic frame definition. -- Added CASSINI_SZM_TELESTO dynamic frame definition. -- Added CASSINI_SZM_IO dynamic frame definition. -- Added CASSINI_SZM_MOON dynamic frame definition. -- Updated CASSINI_SATURN_KM_RAD frame definition to address the timing offset due to the polynomial's specification of t0 is 1-JAN-2004 (UTC), not TDB. -- Modified the definition of the CASSINI_KRTP frame to tie the frame's center to CASSINI, not SATURN. This reference frame is located at the spacecraft, not Saturn. Version 0.9.5 -- June 07, 2006 -- Martha Kusterer -- Added CASSINI_PITCH_GYROPHASE dynamic frame definition. Version 0.9.4 -- May 02, 2006 -- Martha Kusterer -- Added CASSINI_MIMI_INCA_BSIGHT dynamic frame definition. -- Added CASSINI_SATURN_CENTERED dynamic frame definition. -- Added CASSINI_TITAN_CENTERED dynamic frame definition. Version 0.9.3 -- May 24, 2005 -- Martha Kusterer -- Changed frame centers for CASSINI_KRTP and CASSINI_SATURN_SYSTEM_III from -82 (Cassini) to 699 (Saturn). Version 0.9.2 -- May 24, 2005 -- Scott Turner -- Added CASSINI_SATURN_SOL_ORBIT dynamic frame definition. -- Added CASSINI_SATURN_SYSTEM_III frame definition. Version 0.9.1 -- May 5, 2005 -- Scott Turner -- Added CASSINI_KRTP dynamic frame definition. Version 0.9.0 -- June 21, 2004 -- Scott Turner -- Preliminary release. References ---------------------------------------------------------- 1. ``C-kernel Required Reading'' 2. ``Kernel Pool Required Reading'' 3. ``Frames Required Reading'' 4. MIMI Flight Software Documentation (http://sd-www.jhuapl.edu/MIMI) 5. Email from Don Mitchell regarding KRTP frame definition. 6. JCSN User's Guide 7. "A Saturnian Longitude System Based on a Variable Kilometric Radiation Period", W.S.Kurth, et.al. July 2006, obtained from an email from Don Mitchell. 8. "A Saturnian Longitude System Based on a Variable Kilometric Radiation Period", W.S.Kurth, et.al. September 2006, Submitted to Geophysical Research Letters. 9. "An Update to a Saturnian Longitude System Based on Kilometric Radio Emissions", W.S.Kurth, et.all. October 2007, Submitted to Journal of Geophysical Research. Contact Information ---------------------------------------------------------- Direct questions, comments, or concerns about the contents of this kernel to: Scott Turner, APL, (443)778-1693, Scott.Turner@jhuapl.edu or Martha Kusterer, APL, (443)778-7276, Martha.Kusterer@jhuapl.edu Implementation Notes ---------------------------------------------------------- This file is used by the SPICE system as follows: programs that make use of this frame kernel must `load' the kernel, normally during program initialization. Loading the kernel associates data items with their names in a data structure called the `kernel pool'. The SPICELIB routine FURNSH loads a kernel file into the pool as shown below: CALL FURNSH ( frame_kernel_name ) or, if one is using CSPICE: furnsh_c ( frame_kernel_name ) or, ICY: cspice_furnsh, frame_kernel_name This file was created and may be updated with a text editor or word processor. The frames defined in this kernel require the Cassini Spacecraft frame kernel to be loaded into the system. It augments the frame definitions provided there with frames that are convenient for MIMI specific interests. Cassini MIMI Frames ---------------------------------------------------------- The following MIMI frames are defined in this kernel file, listed in the order in which they appear in the file: Frame Name Relative To Type FrameID ========================== ======================= ======= ======= CASSINI_MIMI_INCA_LL CASSINI_MIMI_INCA FIXED -82920 CASSINI_KRTP J2000 DYNAMIC -82921 CASSINI_SATURN_SOL_ORBIT J2000 DYNAMIC -82922 CASSINI_SATURN_SYSTEM_III IAU_SATURN FIXED -82923 CASSINI_SATURN_EQU_SOLAR J2000 DYNAMIC -82924 CASSINI_SATURN_KM_RAD CASSINI_SKR_SLS4_SOUTH FIXED -82910 CASSINI_SKR_SLS1 IAU_SATURN FIXED -82911 CASSINI_SKR_SLS2 CASSINI_SATURN_EQU_SOLAR DYNAMIC -82912 CASSINI_SKR_SLS3 CASSINI_SATURN_EQU_SOLAR DYNAMIC -82913 CASSINI_SZM_TITAN J2000 DYNAMIC -82926 CASSINI_SZM_ATLAS J2000 DYNAMIC -82927 CASSINI_SZM_CALYPSO J2000 DYNAMIC -82928 CASSINI_SZM_DIONE J2000 DYNAMIC -82929 CASSINI_SZM_ENCELADUS J2000 DYNAMIC -82930 CASSINI_SZM_EPIMETHEUS J2000 DYNAMIC -82931 CASSINI_SZM_HELENE J2000 DYNAMIC -82932 CASSINI_SZM_HYPERION J2000 DYNAMIC -82933 CASSINI_SZM_JANUS J2000 DYNAMIC -82934 CASSINI_SZM_IAPETUS J2000 DYNAMIC -82935 CASSINI_SZM_MIMAS J2000 DYNAMIC -82936 CASSINI_SZM_RHEA J2000 DYNAMIC -82937 CASSINI_SZM_TETHYS J2000 DYNAMIC -82938 CASSINI_SZM_PAN J2000 DYNAMIC -82939 CASSINI_SZM_PANDORA J2000 DYNAMIC -82940 CASSINI_SZM_PHOEBE J2000 DYNAMIC -82941 CASSINI_SZM_PROMETHEUS J2000 DYNAMIC -82942 CASSINI_SZM_TELESTO J2000 DYNAMIC -82943 CASSINI_SZM_IO J2000 DYNAMIC -82944 CASSINI_SZM_MOON J2000 DYNAMIC -82945 CASSINI_SUNJ2000 J2000 DYNAMIC -82946 CASSINI_MIMI_INCA_BSIGHT J2000 DYNAMIC -82951 CASSINI_SATURN_CENTERED J2000 DYNAMIC -82952 CASSINI_TITAN_CENTERED J2000 DYNAMIC -82953 CASSINI_PITCH_GYROPHASE J2000 DYNAMIC -82954 CASSINI_SATURN_SKR_LOCK J2000 DYNAMIC -82955 CASSINI_SATURN_SKR3_LOCK J2000 DYNAMIC -82980 CASSINI_SATURN_SKR4S_LOCK J2000 DYNAMIC -82981 CASSINI_SATURN_SKR4N_LOCK J2000 DYNAMIC -82982 CASSINI_CRTN J2000 DYNAMIC -82958 CASSINI_MIMI_LEMMS_AA J2000 DYNAMIC -82959 CASSINI_MIMI_PROF_TITAN J2000 DYNAMIC -82960 CASSINI_MIMI_GSE J2000 DYNAMIC -82961 CASSINI_COROT_ENCELADUS J2000 DYNAMIC -82962 CASSINI_MIMI_ECLIPJ2000 ECLIPJ2000 FIXED -82963 CASSINI_ISMF J2000 DYNAMIC -82964 CASSINI_ISMF_X J2000 DYNAMIC -82965 CASSINI_SZS_XY_PLANE CASSINI_SATURN_EQU_SOLAR FIXED -82966 CASSINI_SC2SAT_SPIN_PLN J2000 DYNAMIC -82967 CASSINI_SKR_SLS4_SOUTH CASSINI_SATURN_EQU_SOLAR CK -82970 CASSINI_SKR_SLS4_NORTH CASSINI_SATURN_EQU_SOLAR CK -82971 CASSINI_SKR_SLSM_SOUTH CASSINI_SATURN_EQU_SOLAR CK -82972 CASSINI_SKR_SLSM_NORTH CASSINI_SATURN_EQU_SOLAR CK -82973 CASSINI_JUPITER_EQU_SOLAR J2000 DYNAMIC -82976 CASSINI_JUPITER_CENTERED J2000 DYNAMIC -82947 CASSINI_MIMI_MAG_RTN J2000 DYNAMIC -82978 CASSINI_MIMI_MAG_KRTP J2000 DYNAMIC -82979 This table provides at-a-glance summary of key attributes of these frames (center, dynamic frames family, principal dynamic vectors, etc): Frame Name Center Kind ========================== ========= ====== =========================================================== CASSINI_MIMI_INCA_LL CASSINI FIXED AXIS-SWAP,CASSINI_MIMI_INCA CASSINI_KRTP CASSINI TWOVEC +X(POS:SATURN->CASSINI),+Z((0,0,1)IAU_SATURN) CASSINI_SATURN_SOL_ORBIT SATURN TWOVEC +X(POS:SATURN->SUN),-Y(VEL:SUN->SATURN,J2000) CASSINI_SATURN_SYSTEM_III SATURN FIXED ALIAS,IAU_SATURN CASSINI_SATURN_EQU_SOLAR SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:SATURN->SUN) CASSINI_SATURN_KM_RAD SATURN FIXED ALIAS,CASSINI_SKR_SLS4_SOUTH CASSINI_SKR_SLS1 SATURN FIXED ALIAS,IAU_SATURN CASSINI_SKR_SLS2 SATURN EULER w.r.t.SATURN_EQUATORIAL_SYSTEM CASSINI_SKR_SLS3 SATURN EULER w.r.t.SATURN_EQUATORIAL_SYSTEM CASSINI_SZM_TITAN SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:TITAN->SATURN) CASSINI_SZM_ATLAS SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:ATLAS->SATURN) CASSINI_SZM_CALYPSO SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:CALYPSO->SATURN) CASSINI_SZM_DIONE SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:DIONE->SATURN) CASSINI_SZM_ENCELADUS SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:ENCELADUS->SATURN) CASSINI_SZM_EPIMETHEUS SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:EPIMETHEUS->SATURN) CASSINI_SZM_HELENE SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:HELENE->SATURN) CASSINI_SZM_HYPERION SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:HYPERION->SATURN) CASSINI_SZM_JANUS SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:JANUS->SATURN) CASSINI_SZM_IAPETUS SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:IAPETUS->SATURN) CASSINI_SZM_MIMAS SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:MIMAS->SATURN) CASSINI_SZM_RHEA SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:RHEA->SATURN) CASSINI_SZM_TETHYS SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:TETHYS->SATURN) CASSINI_SZM_PAN SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:PAN->SATURN) CASSINI_SZM_PANDORA SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:PANDORA->SATURN) CASSINI_SZM_PHOEBE SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:PHOEBE->SATURN) CASSINI_SZM_PROMETHEUS SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:PROMETHEUS->SATURN) CASSINI_SZM_TELESTO SATURN TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:TELESTO->SATURN) CASSINI_SZM_IO SATURN TWOVEC +Z((0,0,1)IAU_JUPITER),+X(POS:IO->JUPITER) CASSINI_SZM_MOON SATURN TWOVEC +Z((0,0,1)IAU_EARTH),+X(POS:MOON->EARTH) CASSINI_SUNJ2000 SUN TWOVEC +Z((0,0,1)IAU_SUN),+X(POS:SUN->JUPITER@J2000) CASSINI_MIMI_INCA_BSIGHT CASSINI TWOVEC +X((1,0,0)CASSINI_MIMI_INCA_LL),+Z((0,0,1)IAU_SATURN) CASSINI_SATURN_CENTERED CASSINI TWOVEC +X(POS:CASSINI->SATURN),+Z((0,0,1)IAU_SATURN) CASSINI_TITAN_CENTERED CASSINI TWOVEC +X(POS:CASSINI->TITAN),+Z((0,0,1)IAU_TITAN) CASSINI_PITCH_GYROPHASE CASSINI TWOVEC +Z((0,0,1)J2000),+X(POS:CASSINI->SUN) CASSINI_SATURN_SKR_LOCK CASSINI TWOVEC +X(POS:CASSINI->SATURN),+Z((1,0,0)SATURN_KILOMETRIC_RAD) CASSINI_SATURN_SKR3_LOCK CASSINI TWOVEC +X(POS:CASSINI->SATURN),+Z((1,0,0)SKR_SLS3) CASSINI_SATURN_SKR4S_LOCK CASSINI TWOVEC +X(POS:CASSINI->SATURN),+Z((1,0,0)CASSINI_SKR_SLS4_SOUTH) CASSINI_SATURN_SKR4N_LOCK CASSINI TWOVEC +X(POS:CASSINI->SATURN),+Z((1,0,0)CASSINI_SKR_SLS4_NORTH) CASSINI_CRTN CASSINI TWOVEC +X(POS:CASSINI->SUN),+Z((0,0,1)IAU_SUN) CASSINI_MIMI_LEMMS_AA CASSINI TWOVEC +Z(POS:CASSINI->SUN),-Y((0,0,1)ECLIPJ2000) CASSINI_MIMI_PROF_TITAN CASSINI TWOVEC +Z(POS:CASSINI->TITAN),+X((0,0,1)IAU_SATURN) CASSINI_MIMI_GSE EARTH TWOVEC +X(POS:EARTH->SUN),-Y(VEL:SUN->EARTH,J2000) CASSINI_COROT_ENCELADUS ENCELADUS TWOVEC +Z((0,0,1)IAU_SATURN),+X(POS:SATURN->ENCELADUS) CASSINI_MIMI_ECLIPJ2000 CASSINI FIXED AXIS-SWAP,ECLIPJ2000 CASSINI_ISMF SSB TWOVEC +Z(LON1/LAT1,ECLIPJ2000),+X(LON2/LAT2,ECLIPJ2000) CASSINI_ISMF_X SSB TWOVEC +X(LON1/LAT1,ECLIPJ2000),+Z(LON2/LAT2,ECLIPJ2000) CASSINI_SZS_XY_PLANE SATURN FIXED AXIS-SWAP,SATURN_EQUATORIAL_SYSTEM CASSINI_SC2SAT_SPIN_PLN SATURN TWOVEC +Y((0,0,1)SATURN_EQUATORIAL_SYSTEM),-Z(POS:CASSINI->SATURN) CASSINI_SKR_SLS4_SOUTH SATURN CK http://www-pw.physics.uiowa.edu/SLS4/ CASSINI_SKR_SLS4_NORTH SATURN CK http://www-pw.physics.uiowa.edu/SLS4/ CASSINI_SKR_SLSM_SOUTH SATURN CK http://www.lesia.obspm.fr/kronos/skr_periodicity.php CASSINI_SKR_SLSM_NORTH SATURN CK http://www.lesia.obspm.fr/kronos/skr_periodicity.php CASSINI_JUPITER_EQU_SOLAR JUPITER TWOVEC +Z((0,0,1)IAU_JUPITER),+X(POS:JUPITER->SUN) CASSINI_JUPITER_CENTERED CASSINI TWOVEC +X(POS:CASSINI->JUPITER),+Z((0,0,1)IAU_JUPITER) CASSINI_MIMI_MAG_RTN SUN TWOVEC +X(POS:SUN->CASSINI),+Z((0,0,1)IAU_SUN) CASSINI_MIMI_MAG_KRTP CASSINI TWOVEC +X(POS:SATURN->CASSINI),+Y((0,0,-1)IAU_SATURN) Many frames defined in this FK had different names and IDs prior to version 2.0.0. This table shows the current and the old names and IDs, which may still appear in some documentation and comments in other kernels: Current Frame Name FrameID Old Frame Name Old ID ========================== ======= ========================== ======= CASSINI_MIMI_INCA_LL -82920 CASSINI_MIMI_INCA_LL 1400000 CASSINI_KRTP -82921 CASSINI_KRTP 1400001 CASSINI_SATURN_SOL_ORBIT -82922 SATURN_SOLAR_ORBIT 1400002 CASSINI_SATURN_SYSTEM_III -82923 SATURN_SYSTEM_III 1400003 CASSINI_SATURN_EQU_SOLAR -82924 SATURN_EQUATORIAL_SYSTEM 1400004 CASSINI_SATURN_KM_RAD -82910 SATURN_KILOMETRIC_RAD 1410000 CASSINI_SKR_SLS1 -82911 SKR_SLS1 1410010 CASSINI_SKR_SLS2 -82912 SKR_SLS2 1410020 CASSINI_SKR_SLS3 -82913 SKR_SLS3 1410030 CASSINI_SZM_TITAN -82926 SZM_TITAN 1400006 CASSINI_SZM_ATLAS -82927 SZM_ATLAS 1400007 CASSINI_SZM_CALYPSO -82928 SZM_CALYPSO 1400008 CASSINI_SZM_DIONE -82929 SZM_DIONE 1400009 CASSINI_SZM_ENCELADUS -82930 SZM_ENCELADUS 1400010 CASSINI_SZM_EPIMETHEUS -82931 SZM_EPIMETHEUS 1400011 CASSINI_SZM_HELENE -82932 SZM_HELENE 1400012 CASSINI_SZM_HYPERION -82933 SZM_HYPERION 1400013 CASSINI_SZM_JANUS -82934 SZM_JANUS 1400014 CASSINI_SZM_IAPETUS -82935 SZM_IAPETUS 1400015 CASSINI_SZM_MIMAS -82936 SZM_MIMAS 1400016 CASSINI_SZM_RHEA -82937 SZM_RHEA 1400017 CASSINI_SZM_TETHYS -82938 SZM_TETHYS 1400018 CASSINI_SZM_PAN -82939 SZM_PAN 1400019 CASSINI_SZM_PANDORA -82940 SZM_PANDORA 1400020 CASSINI_SZM_PHOEBE -82941 SZM_PHOEBE 1400021 CASSINI_SZM_PROMETHEUS -82942 SZM_PROMETHEUS 1400022 CASSINI_SZM_TELESTO -82943 SZM_TELESTO 1400023 CASSINI_SZM_IO -82944 SZM_IO 1400024 CASSINI_SZM_MOON -82945 SZM_MOON 1400025 CASSINI_SUNJ2000 -82946 SUNJ2000 1400026 CASSINI_MIMI_INCA_BSIGHT -82951 XINCA_BORESIGHT_CENTERED 1450001 CASSINI_SATURN_CENTERED -82952 XINCA_SATURN_CENTERED 1450002 CASSINI_TITAN_CENTERED -82953 XINCA_TITAN_CENTERED 1450003 CASSINI_PITCH_GYROPHASE -82954 XINCA_PITCH_GYROPHASE 1450004 CASSINI_SATURN_SKR_LOCK -82955 XINCA_SATURN_SKR_LOCKED 1450005 CASSINI_SATURN_SKR3_LOCK -82980 XINCA_SATURN_SKR3_LOCKED 1450030 CASSINI_SATURN_SKR4S_LOCK -82981 XINCA_SATURN_SKR4S_LOCKED 1450031 CASSINI_SATURN_SKR4N_LOCK -82982 XINCA_SATURN_SKR4N_LOCKED 1450032 CASSINI_CRTN -82958 CASSINI_CRTN 1450008 CASSINI_MIMI_LEMMS_AA -82959 CASSINI_MIMI_LEMMS_AA 1450009 CASSINI_MIMI_PROF_TITAN -82960 CASSINI_MIMI_PROF_TITAN 1450010 CASSINI_MIMI_GSE -82961 CASSINI_MIMI_GSE 1450011 CASSINI_COROT_ENCELADUS -82962 COROTATION_ENCELADUS 1450012 CASSINI_MIMI_ECLIPJ2000 -82963 MIMI_ECLIPJ2000 1450013 CASSINI_ISMF -82964 CASSINI_ISMF 1450014 CASSINI_ISMF_X -82965 CASSINI_ISMF_X 1450015 CASSINI_SZS_XY_PLANE -82966 XINCA_SZS_XY_PLANE 1450016 CASSINI_SC2SAT_SPIN_PLN -82967 XINCA_SC2SATNRML_SPIN_PLN 1450017 CASSINI_SKR_SLS4_SOUTH -82970 CASSINI_SKR_SLS4_SOUTH 1440000 CASSINI_SKR_SLS4_NORTH -82971 CASSINI_SKR_SLS4_NORTH 1441000 CASSINI_SKR_SLSM_SOUTH -82972 CASSINI_SKR_SLSM_SOUTH 1442000 CASSINI_SKR_SLSM_NORTH -82973 CASSINI_SKR_SLSM_NORTH 1443000 CASSINI_JUPITER_EQU_SOLAR -82976 JUPITER_EQUATORIAL_SYSTEM 1450026 CASSINI_JUPITER_CENTERED -82947 XINCA_JUPITER_CENTERED 1400027 CASSINI_MIMI_MAG_RTN -82978 CASSINI_MIMI_MAG_RTN 1450028 CASSINI_MIMI_MAG_KRTP -82979 CASSINI_MIMI_MAG_KRTP 1450029 Cassini MIMI Frames Hierarchy ---------------------------------------------------------- NOTE: the diagram below does not show all frames defined in this FK. The diagram below shows the Cassini MIMI Frames Hierarchy: 'ECLIPJ2000' INERTIAL | | | 'CASSINI_MIMI_ECLIPJ2000' 'IAU_EARTH' (EARTH BODY FIXED) | |<--- pck +--- pck | V 'J2000' INERTIAL ---- 'IAU_SATURN' ---- 'CASSINI_SATURN_SYSTEM_III' | | |<--- ck +--- 'CASSINI_SKR_SLS1' | 'CASSINI_SC_COORD' | | | 'CASSINI_MIMI_INCA' | | | 'CASSINI_MIMI_INCA_LL' | 'CASSINI_KRTP' | | | 'CASSINI_SATURN_SOL_ORBIT' | | | 'CASSINI_SATURN_EQU_SOLAR' | | | 'CASSINI_SZS_XY_PLANE' | | | 'CASSINI_SC2SAT_SPIN_PLN' | | | 'CASSINI_SKR_SLS4_SOUTH' ---- 'CASSINI_SATURN_KM_RAD' | | | 'CASSINI_SKR_SLS4_NORTH' | | | 'CASSINI_SKR_SLSM_SOUTH' | | | 'CASSINI_SKR_SLSM_NORTH' | | 'CASSINI_SKR_SLS2' | | | 'CASSINI_SKR_SLS3' | | | 'CASSINI_SZM_TITAN' | | | 'CASSINI_SZM_ATLAS' | | | 'CASSINI_SZM_CALYPSO' | | | 'CASSINI_SZM_DIONE' | | | 'CASSINI_SZM_ENCELADUS' | | | 'CASSINI_SZM_EPIMETHEUS' | | | 'CASSINI_SZM_HELENE' | | | 'CASSINI_SZM_HYPERION' | | | 'CASSINI_SZM_JANUS' | | | 'CASSINI_SZM_IAPETUS' | | | 'CASSINI_SZM_MIMAS' | | | 'CASSINI_SZM_RHEA' | | | 'CASSINI_SZM_TETHYS' | | | 'CASSINI_SZM_PAN' | | | 'CASSINI_SZM_PANDORA' | | | 'CASSINI_SZM_PHOEBE' | | | 'CASSINI_SZM_PROMETHEUS' | | | 'CASSINI_SZM_TELESTO' | | | 'CASSINI_SZM_IO' | | | 'CASSINI_SZM_MOON' | | | 'CASSINI_SUNJ2000' | | | 'CASSINI_SZM_MOON' | | | 'CASSINI_SUNJ2000' | | | 'CASSINI_MIMI_INCA_BSIGHT' | | | 'CASSINI_SATURN_CENTERED' | | | 'CASSINI_TITAN_CENTERED' | | | 'CASSINI_PITCH_GYROPHASE' | | | 'CASSINI_MIMI_GSE' | | | 'CASSINI_SATURN_SKR_LOCK' | | | 'CASSINI_SATURN_SKR3_LOCK' | | | 'CASSINI_SATURN_SKR4S_LOCK' | | | 'CASSINI_SATURN_SKR4N_LOCK' | | | 'CASSINI_CRTN' | | | 'CASSINI_MIMI_LEMMS_AA' | | | 'CASSINI_MIMI_PROF_TITAN' | | | 'CASSINI_COROT_ENCELADUS' | | | 'CASSINI_ISMF' | | | 'CASSINI_ISMF_X' | | | 'CASSINI_JUPITER_EQU_SOLAR' | | | 'CASSINI_JUPITER_CENTERED' | | | 'CASSINI_MIMI_MAG_RTN' | | | 'CASSINI_MIMI_MAG_KRTP' Cassini MIMI INCA Azimuth and Elevation Frame ---------------------------------------------------------- This frame exists to allow more straightforward manipulations to occur in the INCA image product frames. It is defined in such a way that the SPICELIB routines RECLAT and LATREC will return azimuth (longitude) and elevation (latitude) in a format almost consistent with the MIMI flight software specification. Unfortunately, SPICE has a few conventions that are violated by INCA's image product frames: 1. Frames in SPICE are always right-handed, preserving the cross product: i x j = k. 2. The longitude utilized in the companion routines: RECLAT and LATREC is positive East longitude. One of these conventions would have to give to accommodate the definition of azimuth in the INCA image product frame. Rather than violate either of these conventions, one must adjust the output of RECLAT: CALL RECLAT ( RECTAN, RADIUS, LONG, LAT ) LONG = -LONG and the input of LATREC: CALL LATREC ( RADIUS, -LONG, LAT, RECTAN ) This frame is defined such that: ^ | | | | Z (Z ) | LL sc o | +90 +-----------------+ | | | | | | T | | H | | <----------E---| x | Y (~X ) T | X | LL sc A | LL | | (into | | screen) | | | o | | -90 +-----------------+ o o +45 PHI -45 where the boresight of the INCA detector is aligned with the +X axis of the CASSINI_MIMI_INCA_LL frame, and PHI (azimuth) and THETA (elevation) are defined as described above. Again, note that PHI in this frame is -PHI of the actual INCA image frame. The matrix that rotates the CASSINI_MIMI_INCA frame into this configuration is: [ ] [ 0 1 0 ] [ ROT ] = [ 0 0 1 ] [ ] [ 1 0 0 ] And the corresponding frame definition: \begindata FRAME_CASSINI_MIMI_INCA_LL = -82920 FRAME_-82920_NAME = 'CASSINI_MIMI_INCA_LL' FRAME_-82920_CLASS = 4 FRAME_-82920_CLASS_ID = -82920 FRAME_-82920_CENTER = -82 TKFRAME_-82920_SPEC = 'MATRIX' TKFRAME_-82920_RELATIVE = 'CASSINI_MIMI_INCA' TKFRAME_-82920_MATRIX = ( 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0 ) \begintext Cassini MIMI KRTP Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [5]): Data (are) in KRTP, spherical polar Saturn centered coordinates, when R is radial away from Saturn, P is azimuthal, and T is meridional. I interpret that to mean the magnitude of the B vector components as measures at the spacecraft, with the radial direction (R) defined by the Saturn-to-Cassini unit vector, P the azimuthal direction positive in the direction of Saturn's rotation, and parallel to lines of constant latitude in spherical coordinates, and the meridional direction (T) completing the system (should be unit vector with a component in the Saturn north pole direction). The implementation in this frame kernel makes the following associations to preserve the right-handed nature of the frame: (i) X-axis -> R-axis (j) Y-axis -> P-axis (k) Z-axis -> T-axis The diagram below illustrates the RT plane of the KRTP frame. The plane is the plane that contains the Saturn-Cassini vector and Saturn's body rotation axis. Saturn's Rotation ,* Cassini Axis ,' ^ ,' | ,' T-axis _ | ,' /\ | _,' \*|** ,'/ R-axis * \| ,' * *' * * * ***** Saturn Figure: The KRTP "RT" Plane The P-axis of the CASSINI_KRTP frame is normal to the plane above, and points in the direction of Saturn's rotation. In the figure above, this would be directed into the page. The SPICE frame definition follows: \begindata FRAME_CASSINI_KRTP = -82921 FRAME_-82921_NAME = 'CASSINI_KRTP' FRAME_-82921_CLASS = 5 FRAME_-82921_CLASS_ID = -82921 FRAME_-82921_CENTER = -82 FRAME_-82921_RELATIVE = 'J2000' FRAME_-82921_DEF_STYLE = 'PARAMETERIZED' FRAME_-82921_FAMILY = 'TWO-VECTOR' FRAME_-82921_PRI_AXIS = 'X' FRAME_-82921_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82921_PRI_OBSERVER = 'SATURN' FRAME_-82921_PRI_TARGET = 'CASSINI' FRAME_-82921_PRI_ABCORR = 'NONE' FRAME_-82921_SEC_AXIS = 'Z' FRAME_-82921_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82921_SEC_FRAME = 'IAU_SATURN' FRAME_-82921_SEC_SPEC = 'RECTANGULAR' FRAME_-82921_SEC_VECTOR = ( 0.0, 0.0, 1.0 ) \begintext Saturn Solar Orbit Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): ... the primary axis is a vector parallel to the Saturn-Sun line and is labeled X. The Z-axis is the result of the cross product of Saturn's velocity vector relative to the Sun with the primary axis. The Y-axis completes the right-handed system. The diagram below attempts to illustrate this frame: | Z Vs | '. | 'o Saturn .' \ .' \ .' X \ .' Y .' .' * Sun Figure: The Saturn Solar Orbit Frame In the diagram, X, Vs, and Y all lie in the plane normal to Z. The SPICE frame definition follows: \begindata FRAME_CASSINI_SATURN_SOL_ORBIT = -82922 FRAME_-82922_NAME = 'CASSINI_SATURN_SOL_ORBIT' FRAME_-82922_CLASS = 5 FRAME_-82922_CLASS_ID = -82922 FRAME_-82922_CENTER = 699 FRAME_-82922_RELATIVE = 'J2000' FRAME_-82922_DEF_STYLE = 'PARAMETERIZED' FRAME_-82922_FAMILY = 'TWO-VECTOR' FRAME_-82922_PRI_AXIS = 'X' FRAME_-82922_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82922_PRI_OBSERVER = 'SATURN' FRAME_-82922_PRI_TARGET = 'SUN' FRAME_-82922_PRI_ABCORR = 'NONE' FRAME_-82922_SEC_AXIS = '-Y' FRAME_-82922_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY' FRAME_-82922_SEC_OBSERVER = 'SUN' FRAME_-82922_SEC_TARGET = 'SATURN' FRAME_-82922_SEC_FRAME = 'J2000' FRAME_-82922_SEC_ABCORR = 'NONE' \begintext Saturn System III Frame ---------------------------------------------------------- The Saturn System III frame is simply an alias for the IAU_SATURN frame currently supported by the PCK system in SPICE. This may change, if our understanding of the System III analog at Saturn improves. \begindata FRAME_CASSINI_SATURN_SYSTEM_III = -82923 FRAME_-82923_NAME = 'CASSINI_SATURN_SYSTEM_III' FRAME_-82923_CLASS = 4 FRAME_-82923_CLASS_ID = -82923 FRAME_-82923_CENTER = 699 TKFRAME_-82923_SPEC = 'MATRIX' TKFRAME_-82923_RELATIVE = 'IAU_SATURN' TKFRAME_-82923_MATRIX = ( 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 ) \begintext Saturn Equatorial System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The primary axis, labeled Z, is parallel to the Saturn spin axis. The Y-axis is then defined as the cross product of this vector with the Saturn-Sun vector. The X-axis completes the right-handed system and is directed "towards" the Sun. The diagram below attempts to illustrate this frame: | Z | | o Saturn ./ \ .'/ \ .' / X \ .' Y .' .' * Sun Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Sun vector. X lies in this plane directed towards the Sun. The SPICE frame definition follows: \begindata FRAME_CASSINI_SATURN_EQU_SOLAR = -82924 FRAME_-82924_NAME = 'CASSINI_SATURN_EQU_SOLAR' FRAME_-82924_CLASS = 5 FRAME_-82924_CLASS_ID = -82924 FRAME_-82924_CENTER = 699 FRAME_-82924_RELATIVE = 'J2000' FRAME_-82924_DEF_STYLE = 'PARAMETERIZED' FRAME_-82924_FAMILY = 'TWO-VECTOR' FRAME_-82924_PRI_AXIS = 'Z' FRAME_-82924_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82924_PRI_FRAME = 'IAU_SATURN' FRAME_-82924_PRI_SPEC = 'RECTANGULAR' FRAME_-82924_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82924_SEC_AXIS = 'X' FRAME_-82924_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82924_SEC_OBSERVER = 'SATURN' FRAME_-82924_SEC_TARGET = 'SUN' FRAME_-82924_SEC_ABCORR = 'NONE' \begintext Saturn Variable Kilometric Radiation Frames ---------------------------------------------------------- Due to the work of the RPWS team we now have several Saturn Kilometric Radiation frames available for use. The general frame naming convention is as follows: CASSINI_SKR_SLS1 CASSINI_SKR_SLS2 CASSINI_SKR_SLS3 As new frames are added, their numberings will be increased according to the papers released once new fits are available. The original CASSINI_SATURN_KM_RAD frame defined here when the first paper was released is now simply an alias that points to the latest, released version. This may change to a C-kernel or some other implementation if the need arises. The currently released paper [9], describes the time ranges of the validity of the fits provided as follows: CASSINI_SKR_SLS2 [ Jan 1, 2004; Aug 28, 2006 ] CASSINI_SKR_SLS3 [ Jan 1, 2004; Aug 10, 2007 ] SLS4N [ 2006:095; 2009:259] SLS4S [ 2004:256; 2010:314] If one attempts to blend the two together, the transition date should be: [ 2007-098T00:00 ], the last point in time the two independent fits match. Using one or the other in the time ranges [ Jan 1, 2004; May 20, 2006 ] the deviations between the two are less than 10 degrees, within the fit uncertainty. \begindata FRAME_CASSINI_SATURN_KM_RAD = -82910 FRAME_-82910_NAME = 'CASSINI_SATURN_KM_RAD' FRAME_-82910_CLASS = 4 FRAME_-82910_CLASS_ID = -82910 FRAME_-82910_CENTER = 699 TKFRAME_-82910_SPEC = 'MATRIX' TKFRAME_-82910_RELATIVE = 'CASSINI_SKR_SLS4_SOUTH' TKFRAME_-82910_MATRIX = ( 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 ) \begintext The original SKR frame is synonymous the IAU_SATURN frame in SPICE. So, for convenience sake, we just define an alias to that frame. \begindata FRAME_CASSINI_SKR_SLS1 = -82911 FRAME_-82911_NAME = 'CASSINI_SKR_SLS1' FRAME_-82911_CLASS = 4 FRAME_-82911_CLASS_ID = -82911 FRAME_-82911_CENTER = 699 TKFRAME_-82911_SPEC = 'MATRIX' TKFRAME_-82911_RELATIVE = 'IAU_SATURN' TKFRAME_-82911_MATRIX = ( 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 ) \begintext The frame definition for CASSINI_SKR_SLS2 is based off the correction [8] to the original [7] RPWS paper describing their modeling efforts for this rotation. As before, several assumptions are made in the definition: (1) The Z-axis of the CASSINI_SKR_SLS2 frame is coincident with the instantaneous body rotation axis of Saturn as defined by the PCK. (2) The Julian date used as the independent time argument in [7] is synonymous with Julian date TDB. The initial date is actually specified in UTC, but we will assume that we can evaluate the polynomial in a TDB time base. Note: there is an issue with leapseconds, in that if the polynomial was truly developed to fit "UTC" then as leapseconds are introduced, we will continually drift one second ahead. The specific implementation of the frame is as follows: The Z-axis is identical to the CASSINI_SATURN_EQU_SOLAR Z-axis. Given the way the CASSINI_SATURN_EQU_SOLAR is defined, this is also identical to the Z-axis of the IAU_SATURN frame. The X-axis is defined by the polynomial expansion of the SKR peak solar longitude provided in [8]: lambda = C + w (t - T ) - phi(t - T ) sun 0 0 0 0 where: 2 3 phi(T) = C + C T + C T + C T 1 2 3 4 and the coefficients provided in the paper are: o w = 360 / 0.44970 JD 0 T = JD(1-JAN-2004) = 2453005.5 0 o C = 100.0 0 o C = 87.77 1 o C = -2.527 /JD 2 o 2 C = 3.041E-3 /JD 3 o 3 C = -7.913E-7 /JD 4 The Euler family of dynamic frames supported by SPICE requires the independent time variable of the polynomial be specified in TDB seconds past some reference epoch. Further, since the transformation captured here rotates vectors from the SKR based system to the equatorial one: [ ] V = [ M(t) ] V SZS [ ] SKR 3 the angle is specified in the opposite sense as discussed in [8]. The other two angles of the Euler triple are set to zero, since the rotation from the CASSINI_SATURN_KM_RAD frame to the CASSINI_SATURN_EQU_SOLAR is purely a rotation about the Z-axis. Thus, we need to determine a, b, c, d, and t such that: 0 2 3 M(t) = a + b (t - t ) + c (t - t ) + d (t - t ) 0 0 0 So, we have: a = -(C - C ) = -1.2230000000000E+01 0 1 -(w - C ) 0 2 b = ------------ = -9.2946839019223E-03 86400 C 3 c = ------------ = 4.0736989883402E-13 2 (86400) C 4 c = ------------ = -1.2268739303111E-21 3 (86400) t = 1-JAN-2004 (UTC) = 1-JAN-2004 00:01:04.1839116 (TDB) 0 The SPICE frame definition follows based upon this follows: \begindata FRAME_CASSINI_SKR_SLS2 = -82912 FRAME_-82912_NAME = 'CASSINI_SKR_SLS2' FRAME_-82912_CLASS = 5 FRAME_-82912_CLASS_ID = -82912 FRAME_-82912_CENTER = 699 FRAME_-82912_RELATIVE = 'CASSINI_SATURN_EQU_SOLAR' FRAME_-82912_DEF_STYLE = 'PARAMETERIZED' FRAME_-82912_FAMILY = 'EULER' FRAME_-82912_EPOCH = @2004-001T00:01:04.1839116 FRAME_-82912_AXES = ( 3, 1, 3 ) FRAME_-82912_UNITS = 'DEGREES' FRAME_-82912_ANGLE_1_COEFFS = ( -1.2230000000000E+01, -9.2946839019223E-03, 4.0736989883402E-13, -1.2268739303111E-21 ) FRAME_-82912_ANGLE_2_COEFFS = ( 0 ) FRAME_-82912_ANGLE_3_COEFFS = ( 0 ) \begintext This frame is built around the definition of the SKR solar longitude outlined in [7]. Several assumptions are made in the definition: (1) The Z-axis of the CASSINI_SKR_SLS2 frame is coincident with the instantaneous body rotation axis of Saturn as defined by the PCK. (2) The Julian date used as the independent time argument in [7] is synonymous with Julian date TDB. The initial date is actually specified in UTC, but we will assume that we can evaluate the polynomial in a TDB time base. Note: there is an issue with leapseconds, in that if the polynomial was truly developed to fit "UTC" then as leapseconds are introduced, we will continually drift one second ahead. The specific implementation of the frame is as follows: The Z-axis is identical to the CASSINI_SATURN_EQU_SOLAR Z-axis. Given the way the CASSINI_SATURN_EQU_SOLAR is defined, this is also identical to the Z-axis of the IAU_SATURN frame. The X-axis is defined by the polynomial expansion of the SKR peak solar longitude provided in [7]: lambda = C + w (t - T ) - phi(t - T ) sun 0 0 0 0 where: 2 3 phi(T) = C + C T + C T + C T 1 2 3 4 and the coefficients provided in the paper are: o w = 360 / 0.44970 JD 0 T = JD(1-JAN-2004) = 2453005.5 0 o C = 100.0 0 o C = 100.2 1 o C = -2.6723 /JD 2 o 2 C = 3.3462E-3 /JD 3 o 3 C = -9.529E-7 /JD 4 The Euler family of dynamic frames supported by SPICE requires the independent time variable of the polynomial be specified in TDB seconds past some reference epoch. Further, since the transformation captured here rotates vectors from the SKR based system to the equatorial one: [ ] V = [ M(t) ] V SZS [ ] SKR 3 the angle is specified in the opposite sense as discussed in [7]. The other two angles of the Euler triple are set to zero, since the rotation from the CASSINI_SATURN_KM_RAD frame to the CASSINI_SATURN_EQU_SOLAR is purely a rotation about the Z-axis. Thus, we need to determine a, b, c, d, and t such that: 0 2 3 M(t) = a + b (t - t ) + c (t - t ) + d (t - t ) 0 0 0 So, we have: a = -(C - C ) = 2.0000000000000E-01 0 1 -(w - C ) 0 2 b = ------------ = -9.2963656148852E-03 86400 C 3 c = ------------ = 4.4825424382716E-13 2 (86400) C 4 c = ------------ = -1.4774272313830E-21 3 (86400) t = 1-JAN-2004 (UTC) = 1-JAN-2004 00:01:04.1839116 (TDB) 0 The SPICE frame definition follows based upon this follows: FRAME_CASSINI_SKR_SLS2 = -82912 FRAME_-82912_NAME = 'CASSINI_SKR_SLS2' FRAME_-82912_CLASS = 5 FRAME_-82912_CLASS_ID = -82912 FRAME_-82912_CENTER = 699 FRAME_-82912_RELATIVE = 'CASSINI_SATURN_EQU_SOLAR' FRAME_-82912_DEF_STYLE = 'PARAMETERIZED' FRAME_-82912_FAMILY = 'EULER' FRAME_-82912_EPOCH = @2004-001T00:01:04.1839116 FRAME_-82912_AXES = ( 3, 1, 3 ) FRAME_-82912_UNITS = 'DEGREES' FRAME_-82912_ANGLE_1_COEFFS = ( 2.0000000000000E-01, -9.2963656148852E-03, 4.4825424382716E-13, -1.4774272313830E-21 ) FRAME_-82912_ANGLE_2_COEFFS = ( 0 ) FRAME_-82912_ANGLE_3_COEFFS = ( 0 ) CASSINI_SKR_SLS3---------------- The definition of the CASSINI_SKR_SLS3 frame is based off the new model presented in [9]. As with the CASSINI_SKR_SLS2 frame implementation, several assumptions are made: (1) The Z-axis of the CASSINI_SKR_SLS3 frame is coincident with the instantaneous body rotation axis of Saturn as defined by the PCK. (2) The Julian date used as the independent time argument in [7] is synonymous with Julian date TDB. The initial date is actually specified in UTC, but we will assume that we can evaluate the polynomial in a TDB time base. Note: there is an issue with leapseconds, in that if the polynomial was truly developed to fit "UTC" then as leapseconds are introduced, we will continually drift one second ahead. The specific implementation of the frame is as follows: The Z-axis is identical to the CASSINI_SATURN_EQU_SOLAR Z-axis. Given the way the CASSINI_SATURN_EQU_SOLAR is defined, this is also identical to the Z-axis of the IAU_SATURN frame. The X-axis is defined by the polynomial expansion of the SKR peak solar longitude provided in [8]: lambda = C + w (t - T ) - phi(t - T ) sun 0 0 0 0 where: 2 3 4 5 phi(T) = C + C T + C T + C T + C T + C T 1 2 3 4 5 6 and the coefficients provided in the paper are: o w = 360 / 0.44970 JD 0 T = JD(1-JAN-2004) = 2453005.5 0 o C = 100.0 0 o C = 86.6681 1 o C = -2.7537 /JD 2 o 2 C = 4.7730E-3 /JD 3 o 3 C = -4.8755E-6 /JD 4 o 4 C = 3.5653E-9 /JD 5 o 5 C = -9.1485E-13 /JD 6 The Euler family of dynamic frames supported by SPICE requires the independent time variable of the polynomial be specified in TDB seconds past some reference epoch. Further, since the transformation captured here rotates vectors from the SKR based system to the equatorial one: [ ] V = [ M(t) ] V SZS [ ] SKR 3 the angle is specified in the opposite sense as discussed in [8]. The other two angles of the Euler triple are set to zero, since the rotation from the CASSINI_SATURN_KM_RAD frame to the CASSINI_SATURN_EQU_SOLAR is purely a rotation about the Z-axis. Thus, we need to determine a, b, c, d, e, f and t such that: 0 2 3 M(t) = a + b (t - t ) + c (t - t ) + d (t - t ) + ... 0 0 0 4 5 e (t - t ) + f (t - t ) 0 0 So, we have: a = -(C - C ) = -1.333190000000000E+01 0 1 -(w - C ) 0 2 b = ------------ = -9.29730774451486E-03 86400 C 3 c = ------------ = 6.393872170781893E-13 2 (86400) C 4 d = ------------ = -7.559236506042652E-21 3 (86400) C 5 e = ------------ = 6.397953940857409E-29 4 (86400) C 6 f = ------------ = -1.900120659809354E-37 5 (86400) t = 1-JAN-2004 (UTC) = 1-JAN-2004 00:01:04.1839116 (TDB) 0 The SPICE frame definition follows based upon this follows: \begindata FRAME_CASSINI_SKR_SLS3 = -82913 FRAME_-82913_NAME = 'CASSINI_SKR_SLS3' FRAME_-82913_CLASS = 5 FRAME_-82913_CLASS_ID = -82913 FRAME_-82913_CENTER = 699 FRAME_-82913_RELATIVE = 'CASSINI_SATURN_EQU_SOLAR' FRAME_-82913_DEF_STYLE = 'PARAMETERIZED' FRAME_-82913_FAMILY = 'EULER' FRAME_-82913_EPOCH = @2004-001T00:01:04.1839116 FRAME_-82913_AXES = ( 3, 1, 3 ) FRAME_-82913_UNITS = 'DEGREES' FRAME_-82913_ANGLE_1_COEFFS = ( -1.333190000000000E+01, -9.29730774451486E-03, 6.393872170781893E-13, -7.559236506042652E-21, 6.397953940857409E-29, -1.900120659809354E-37 ) FRAME_-82913_ANGLE_2_COEFFS = ( 0 ) FRAME_-82913_ANGLE_3_COEFFS = ( 0 ) \begintext Saturn-Titan System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Titan o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_TITAN = -82926 FRAME_-82926_NAME = 'CASSINI_SZM_TITAN' FRAME_-82926_CLASS = 5 FRAME_-82926_CLASS_ID = -82926 FRAME_-82926_CENTER = 699 FRAME_-82926_RELATIVE = 'J2000' FRAME_-82926_DEF_STYLE = 'PARAMETERIZED' FRAME_-82926_FAMILY = 'TWO-VECTOR' FRAME_-82926_PRI_AXIS = 'Z' FRAME_-82926_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82926_PRI_FRAME = 'IAU_SATURN' FRAME_-82926_PRI_SPEC = 'RECTANGULAR' FRAME_-82926_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82926_SEC_AXIS = 'X' FRAME_-82926_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82926_SEC_OBSERVER = 'TITAN' FRAME_-82926_SEC_TARGET = 'SATURN' FRAME_-82926_SEC_ABCORR = 'NONE' \begintext Saturn-Atlas System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Atlas o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_ATLAS = -82927 FRAME_-82927_NAME = 'CASSINI_SZM_ATLAS' FRAME_-82927_CLASS = 5 FRAME_-82927_CLASS_ID = -82927 FRAME_-82927_CENTER = 699 FRAME_-82927_RELATIVE = 'J2000' FRAME_-82927_DEF_STYLE = 'PARAMETERIZED' FRAME_-82927_FAMILY = 'TWO-VECTOR' FRAME_-82927_PRI_AXIS = 'Z' FRAME_-82927_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82927_PRI_FRAME = 'IAU_SATURN' FRAME_-82927_PRI_SPEC = 'RECTANGULAR' FRAME_-82927_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82927_SEC_AXIS = 'X' FRAME_-82927_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82927_SEC_OBSERVER = 'ATLAS' FRAME_-82927_SEC_TARGET = 'SATURN' FRAME_-82927_SEC_ABCORR = 'NONE' \begintext Saturn-Calypso System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Calypso o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_CALYPSO = -82928 FRAME_-82928_NAME = 'CASSINI_SZM_CALYPSO' FRAME_-82928_CLASS = 5 FRAME_-82928_CLASS_ID = -82928 FRAME_-82928_CENTER = 699 FRAME_-82928_RELATIVE = 'J2000' FRAME_-82928_DEF_STYLE = 'PARAMETERIZED' FRAME_-82928_FAMILY = 'TWO-VECTOR' FRAME_-82928_PRI_AXIS = 'Z' FRAME_-82928_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82928_PRI_FRAME = 'IAU_SATURN' FRAME_-82928_PRI_SPEC = 'RECTANGULAR' FRAME_-82928_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82928_SEC_AXIS = 'X' FRAME_-82928_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82928_SEC_OBSERVER = 'CALYPSO' FRAME_-82928_SEC_TARGET = 'SATURN' FRAME_-82928_SEC_ABCORR = 'NONE' \begintext Saturn-Dione System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Dione o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_DIONE = -82929 FRAME_-82929_NAME = 'CASSINI_SZM_DIONE' FRAME_-82929_CLASS = 5 FRAME_-82929_CLASS_ID = -82929 FRAME_-82929_CENTER = 699 FRAME_-82929_RELATIVE = 'J2000' FRAME_-82929_DEF_STYLE = 'PARAMETERIZED' FRAME_-82929_FAMILY = 'TWO-VECTOR' FRAME_-82929_PRI_AXIS = 'Z' FRAME_-82929_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82929_PRI_FRAME = 'IAU_SATURN' FRAME_-82929_PRI_SPEC = 'RECTANGULAR' FRAME_-82929_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82929_SEC_AXIS = 'X' FRAME_-82929_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82929_SEC_OBSERVER = 'DIONE' FRAME_-82929_SEC_TARGET = 'SATURN' FRAME_-82929_SEC_ABCORR = 'NONE' \begintext Saturn-Enceladus System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Enceladus o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_ENCELADUS = -82930 FRAME_-82930_NAME = 'CASSINI_SZM_ENCELADUS' FRAME_-82930_CLASS = 5 FRAME_-82930_CLASS_ID = -82930 FRAME_-82930_CENTER = 699 FRAME_-82930_RELATIVE = 'J2000' FRAME_-82930_DEF_STYLE = 'PARAMETERIZED' FRAME_-82930_FAMILY = 'TWO-VECTOR' FRAME_-82930_PRI_AXIS = 'Z' FRAME_-82930_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82930_PRI_FRAME = 'IAU_SATURN' FRAME_-82930_PRI_SPEC = 'RECTANGULAR' FRAME_-82930_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82930_SEC_AXIS = 'X' FRAME_-82930_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82930_SEC_OBSERVER = 'ENCELADUS' FRAME_-82930_SEC_TARGET = 'SATURN' FRAME_-82930_SEC_ABCORR = 'NONE' \begintext Saturn-Epimetheus System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Epimetheus o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_EPIMETHEUS = -82931 FRAME_-82931_NAME = 'CASSINI_SZM_EPIMETHEUS' FRAME_-82931_CLASS = 5 FRAME_-82931_CLASS_ID = -82931 FRAME_-82931_CENTER = 699 FRAME_-82931_RELATIVE = 'J2000' FRAME_-82931_DEF_STYLE = 'PARAMETERIZED' FRAME_-82931_FAMILY = 'TWO-VECTOR' FRAME_-82931_PRI_AXIS = 'Z' FRAME_-82931_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82931_PRI_FRAME = 'IAU_SATURN' FRAME_-82931_PRI_SPEC = 'RECTANGULAR' FRAME_-82931_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82931_SEC_AXIS = 'X' FRAME_-82931_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82931_SEC_OBSERVER = 'EPIMETHEUS' FRAME_-82931_SEC_TARGET = 'SATURN' FRAME_-82931_SEC_ABCORR = 'NONE' \begintext Saturn-Helene System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Helene o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_HELENE = -82932 FRAME_-82932_NAME = 'CASSINI_SZM_HELENE' FRAME_-82932_CLASS = 5 FRAME_-82932_CLASS_ID = -82932 FRAME_-82932_CENTER = 699 FRAME_-82932_RELATIVE = 'J2000' FRAME_-82932_DEF_STYLE = 'PARAMETERIZED' FRAME_-82932_FAMILY = 'TWO-VECTOR' FRAME_-82932_PRI_AXIS = 'Z' FRAME_-82932_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82932_PRI_FRAME = 'IAU_SATURN' FRAME_-82932_PRI_SPEC = 'RECTANGULAR' FRAME_-82932_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82932_SEC_AXIS = 'X' FRAME_-82932_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82932_SEC_OBSERVER = 'HELENE' FRAME_-82932_SEC_TARGET = 'SATURN' FRAME_-82932_SEC_ABCORR = 'NONE' \begintext Saturn-Hyperion System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Hyperion o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_HYPERION = -82933 FRAME_-82933_NAME = 'CASSINI_SZM_HYPERION' FRAME_-82933_CLASS = 5 FRAME_-82933_CLASS_ID = -82933 FRAME_-82933_CENTER = 699 FRAME_-82933_RELATIVE = 'J2000' FRAME_-82933_DEF_STYLE = 'PARAMETERIZED' FRAME_-82933_FAMILY = 'TWO-VECTOR' FRAME_-82933_PRI_AXIS = 'Z' FRAME_-82933_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82933_PRI_FRAME = 'IAU_SATURN' FRAME_-82933_PRI_SPEC = 'RECTANGULAR' FRAME_-82933_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82933_SEC_AXIS = 'X' FRAME_-82933_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82933_SEC_OBSERVER = 'HYPERION' FRAME_-82933_SEC_TARGET = 'SATURN' FRAME_-82933_SEC_ABCORR = 'NONE' \begintext Saturn-Janus System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Janus o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_JANUS = -82934 FRAME_-82934_NAME = 'CASSINI_SZM_JANUS' FRAME_-82934_CLASS = 5 FRAME_-82934_CLASS_ID = -82934 FRAME_-82934_CENTER = 699 FRAME_-82934_RELATIVE = 'J2000' FRAME_-82934_DEF_STYLE = 'PARAMETERIZED' FRAME_-82934_FAMILY = 'TWO-VECTOR' FRAME_-82934_PRI_AXIS = 'Z' FRAME_-82934_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82934_PRI_FRAME = 'IAU_SATURN' FRAME_-82934_PRI_SPEC = 'RECTANGULAR' FRAME_-82934_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82934_SEC_AXIS = 'X' FRAME_-82934_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82934_SEC_OBSERVER = 'JANUS' FRAME_-82934_SEC_TARGET = 'SATURN' FRAME_-82934_SEC_ABCORR = 'NONE' \begintext Saturn-Iapetus System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Iapetus o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_IAPETUS = -82935 FRAME_-82935_NAME = 'CASSINI_SZM_IAPETUS' FRAME_-82935_CLASS = 5 FRAME_-82935_CLASS_ID = -82935 FRAME_-82935_CENTER = 699 FRAME_-82935_RELATIVE = 'J2000' FRAME_-82935_DEF_STYLE = 'PARAMETERIZED' FRAME_-82935_FAMILY = 'TWO-VECTOR' FRAME_-82935_PRI_AXIS = 'Z' FRAME_-82935_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82935_PRI_FRAME = 'IAU_SATURN' FRAME_-82935_PRI_SPEC = 'RECTANGULAR' FRAME_-82935_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82935_SEC_AXIS = 'X' FRAME_-82935_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82935_SEC_OBSERVER = 'IAPETUS' FRAME_-82935_SEC_TARGET = 'SATURN' FRAME_-82935_SEC_ABCORR = 'NONE' \begintext Saturn-Mimus System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Mimus o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_MIMAS = -82936 FRAME_-82936_NAME = 'CASSINI_SZM_MIMAS' FRAME_-82936_CLASS = 5 FRAME_-82936_CLASS_ID = -82936 FRAME_-82936_CENTER = 699 FRAME_-82936_RELATIVE = 'J2000' FRAME_-82936_DEF_STYLE = 'PARAMETERIZED' FRAME_-82936_FAMILY = 'TWO-VECTOR' FRAME_-82936_PRI_AXIS = 'Z' FRAME_-82936_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82936_PRI_FRAME = 'IAU_SATURN' FRAME_-82936_PRI_SPEC = 'RECTANGULAR' FRAME_-82936_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82936_SEC_AXIS = 'X' FRAME_-82936_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82936_SEC_OBSERVER = 'MIMAS' FRAME_-82936_SEC_TARGET = 'SATURN' FRAME_-82936_SEC_ABCORR = 'NONE' \begintext Saturn-Titan System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Rhea o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_RHEA = -82937 FRAME_-82937_NAME = 'CASSINI_SZM_RHEA' FRAME_-82937_CLASS = 5 FRAME_-82937_CLASS_ID = -82937 FRAME_-82937_CENTER = 699 FRAME_-82937_RELATIVE = 'J2000' FRAME_-82937_DEF_STYLE = 'PARAMETERIZED' FRAME_-82937_FAMILY = 'TWO-VECTOR' FRAME_-82937_PRI_AXIS = 'Z' FRAME_-82937_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82937_PRI_FRAME = 'IAU_SATURN' FRAME_-82937_PRI_SPEC = 'RECTANGULAR' FRAME_-82937_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82937_SEC_AXIS = 'X' FRAME_-82937_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82937_SEC_OBSERVER = 'RHEA' FRAME_-82937_SEC_TARGET = 'SATURN' FRAME_-82937_SEC_ABCORR = 'NONE' \begintext Saturn-Tethys System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Tethys o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_TETHYS = -82938 FRAME_-82938_NAME = 'CASSINI_SZM_TETHYS' FRAME_-82938_CLASS = 5 FRAME_-82938_CLASS_ID = -82938 FRAME_-82938_CENTER = 699 FRAME_-82938_RELATIVE = 'J2000' FRAME_-82938_DEF_STYLE = 'PARAMETERIZED' FRAME_-82938_FAMILY = 'TWO-VECTOR' FRAME_-82938_PRI_AXIS = 'Z' FRAME_-82938_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82938_PRI_FRAME = 'IAU_SATURN' FRAME_-82938_PRI_SPEC = 'RECTANGULAR' FRAME_-82938_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82938_SEC_AXIS = 'X' FRAME_-82938_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82938_SEC_OBSERVER = 'TETHYS' FRAME_-82938_SEC_TARGET = 'SATURN' FRAME_-82938_SEC_ABCORR = 'NONE' \begintext Saturn-Pan System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Pan o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_PAN = -82939 FRAME_-82939_NAME = 'CASSINI_SZM_PAN' FRAME_-82939_CLASS = 5 FRAME_-82939_CLASS_ID = -82939 FRAME_-82939_CENTER = 699 FRAME_-82939_RELATIVE = 'J2000' FRAME_-82939_DEF_STYLE = 'PARAMETERIZED' FRAME_-82939_FAMILY = 'TWO-VECTOR' FRAME_-82939_PRI_AXIS = 'Z' FRAME_-82939_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82939_PRI_FRAME = 'IAU_SATURN' FRAME_-82939_PRI_SPEC = 'RECTANGULAR' FRAME_-82939_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82939_SEC_AXIS = 'X' FRAME_-82939_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82939_SEC_OBSERVER = 'PAN' FRAME_-82939_SEC_TARGET = 'SATURN' FRAME_-82939_SEC_ABCORR = 'NONE' \begintext Saturn-Pandora System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Pandora o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_PANDORA = -82940 FRAME_-82940_NAME = 'CASSINI_SZM_PANDORA' FRAME_-82940_CLASS = 5 FRAME_-82940_CLASS_ID = -82940 FRAME_-82940_CENTER = 699 FRAME_-82940_RELATIVE = 'J2000' FRAME_-82940_DEF_STYLE = 'PARAMETERIZED' FRAME_-82940_FAMILY = 'TWO-VECTOR' FRAME_-82940_PRI_AXIS = 'Z' FRAME_-82940_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82940_PRI_FRAME = 'IAU_SATURN' FRAME_-82940_PRI_SPEC = 'RECTANGULAR' FRAME_-82940_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82940_SEC_AXIS = 'X' FRAME_-82940_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82940_SEC_OBSERVER = 'PANDORA' FRAME_-82940_SEC_TARGET = 'SATURN' FRAME_-82940_SEC_ABCORR = 'NONE' \begintext Saturn-Phoebe System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Phoebe o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_PHOEBE = -82941 FRAME_-82941_NAME = 'CASSINI_SZM_PHOEBE' FRAME_-82941_CLASS = 5 FRAME_-82941_CLASS_ID = -82941 FRAME_-82941_CENTER = 699 FRAME_-82941_RELATIVE = 'J2000' FRAME_-82941_DEF_STYLE = 'PARAMETERIZED' FRAME_-82941_FAMILY = 'TWO-VECTOR' FRAME_-82941_PRI_AXIS = 'Z' FRAME_-82941_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82941_PRI_FRAME = 'IAU_SATURN' FRAME_-82941_PRI_SPEC = 'RECTANGULAR' FRAME_-82941_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82941_SEC_AXIS = 'X' FRAME_-82941_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82941_SEC_OBSERVER = 'PHOEBE' FRAME_-82941_SEC_TARGET = 'SATURN' FRAME_-82941_SEC_ABCORR = 'NONE' \begintext Saturn-Prometheus System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Prometheus o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_PROMETHEUS = -82942 FRAME_-82942_NAME = 'CASSINI_SZM_PROMETHEUS' FRAME_-82942_CLASS = 5 FRAME_-82942_CLASS_ID = -82942 FRAME_-82942_CENTER = 699 FRAME_-82942_RELATIVE = 'J2000' FRAME_-82942_DEF_STYLE = 'PARAMETERIZED' FRAME_-82942_FAMILY = 'TWO-VECTOR' FRAME_-82942_PRI_AXIS = 'Z' FRAME_-82942_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82942_PRI_FRAME = 'IAU_SATURN' FRAME_-82942_PRI_SPEC = 'RECTANGULAR' FRAME_-82942_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82942_SEC_AXIS = 'X' FRAME_-82942_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82942_SEC_OBSERVER = 'PROMETHEUS' FRAME_-82942_SEC_TARGET = 'SATURN' FRAME_-82942_SEC_ABCORR = 'NONE' \begintext Saturn-Telesto System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Saturn Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Saturn spin axis. The Y-axis of this frame is chosen to be the cross product of the Saturn-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Telesto o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Saturn Figure: The Saturn Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Saturn's Spin axis (Z) and the Saturn-Moon vector. X lies in this plane directed towards Saturn. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_TELESTO = -82943 FRAME_-82943_NAME = 'CASSINI_SZM_TELESTO' FRAME_-82943_CLASS = 5 FRAME_-82943_CLASS_ID = -82943 FRAME_-82943_CENTER = 699 FRAME_-82943_RELATIVE = 'J2000' FRAME_-82943_DEF_STYLE = 'PARAMETERIZED' FRAME_-82943_FAMILY = 'TWO-VECTOR' FRAME_-82943_PRI_AXIS = 'Z' FRAME_-82943_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82943_PRI_FRAME = 'IAU_SATURN' FRAME_-82943_PRI_SPEC = 'RECTANGULAR' FRAME_-82943_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82943_SEC_AXIS = 'X' FRAME_-82943_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82943_SEC_OBSERVER = 'TELESTO' FRAME_-82943_SEC_TARGET = 'SATURN' FRAME_-82943_SEC_ABCORR = 'NONE' \begintext Jupiter-Io System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Jupiter Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Jupiter spin axis. The Y-axis of this frame is chosen to be the cross product of the Jupiter-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Io o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Jupiter Figure: The Jupiter Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Jupiter's Spin axis (Z) and the Jupiter-Moon vector. X lies in this plane directed towards Jupiter. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_IO = -82944 FRAME_-82944_NAME = 'CASSINI_SZM_IO' FRAME_-82944_CLASS = 5 FRAME_-82944_CLASS_ID = -82944 FRAME_-82944_CENTER = 599 FRAME_-82944_RELATIVE = 'J2000' FRAME_-82944_DEF_STYLE = 'PARAMETERIZED' FRAME_-82944_FAMILY = 'TWO-VECTOR' FRAME_-82944_PRI_AXIS = 'Z' FRAME_-82944_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82944_PRI_FRAME = 'IAU_JUPITER' FRAME_-82944_PRI_SPEC = 'RECTANGULAR' FRAME_-82944_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82944_SEC_AXIS = 'X' FRAME_-82944_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82944_SEC_OBSERVER = 'IO' FRAME_-82944_SEC_TARGET = 'JUPITER' FRAME_-82944_SEC_ABCORR = 'NONE' \begintext Earth-Moon System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Earth Moon System (SZM) frame is a dynamically defined frame whose primary axis, labeled Z, is the Earth spin axis. The Y-axis of this frame is chosen to be the cross product of the Earth-ReferenceMoon vector and this Z-axis. The X-axis completes the right-handed frame. The diagram below attempts to illustrate this frame: | Z .' | .' | .' Moon o' ./ \ .'/ \ .' / X \ | .' Y | .' |.' * Earth Figure: The Earth Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Earth's Spin axis (Z) and the Earth-Moon vector. X lies in this plane directed towards Earth. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZM_MOON = -82945 FRAME_-82945_NAME = 'CASSINI_SZM_MOON' FRAME_-82945_CLASS = 5 FRAME_-82945_CLASS_ID = -82945 FRAME_-82945_CENTER = 399 FRAME_-82945_RELATIVE = 'J2000' FRAME_-82945_DEF_STYLE = 'PARAMETERIZED' FRAME_-82945_FAMILY = 'TWO-VECTOR' FRAME_-82945_PRI_AXIS = 'Z' FRAME_-82945_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82945_PRI_FRAME = 'IAU_EARTH' FRAME_-82945_PRI_SPEC = 'RECTANGULAR' FRAME_-82945_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82945_SEC_AXIS = 'X' FRAME_-82945_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82945_SEC_OBSERVER = 'MOON' FRAME_-82945_SEC_TARGET = 'EARTH' FRAME_-82945_SEC_ABCORR = 'NONE' \begintext Sun Ecliptic of J2000.0 Frame ---------------------------------------------------------- This frame is a dynamically defined frame, prescribed as follows: | Sun Spin Axis (Z axis) | | Sun O ---- (Y axis) / / / Jupiter (X axis) The primary vector points along the Sun spin axis, and the secondary vector that defines the X axis points from the Sun to Jupiter. Since the frame is intended to be inertial, it is frozen at the J2000.0 epoch. The SPICE frame definition follows: \begindata FRAME_CASSINI_SUNJ2000 = -82946 FRAME_-82946_NAME = 'CASSINI_SUNJ2000' FRAME_-82946_CLASS = 5 FRAME_-82946_CLASS_ID = -82946 FRAME_-82946_CENTER = 10 FRAME_-82946_RELATIVE = 'J2000' FRAME_-82946_DEF_STYLE = 'PARAMETERIZED' FRAME_-82946_FAMILY = 'TWO-VECTOR' FRAME_-82946_PRI_AXIS = 'Z' FRAME_-82946_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82946_PRI_FRAME = 'IAU_SUN' FRAME_-82946_PRI_SPEC = 'RECTANGULAR' FRAME_-82946_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82946_SEC_AXIS = 'X' FRAME_-82946_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82946_SEC_OBSERVER = 'SUN' FRAME_-82946_SEC_TARGET = 'JUPITER' FRAME_-82946_SEC_ABCORR = 'NONE' FRAME_-82946_FREEZE_EPOCH = @2000-JAN-01/12:00:00.000 \begintext ---------------------------------------------------------- Cassini/MIMI XINCA Specific Frames ---------------------------------------------------------- XINCA Boresight Centered Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows The primary axis is the CASSINI_MIMI_INCA_LL boresight X axis and is labeled X. The secondary Z axis is the Z axis of the IAU_SATURN frame. The Y-axis completes the right-handed system. This frame is primarily used by the XINCA program. XINCA's skymap display is defined to display every frame with the Z axis up, X axis into the page and Y axis out to the left. So in the skymap, using this frame, Z or up is the spin axis of Saturn, into the page is the boresight. \begindata FRAME_CASSINI_MIMI_INCA_BSIGHT = -82951 FRAME_-82951_NAME = 'CASSINI_MIMI_INCA_BSIGHT' FRAME_-82951_CLASS = 5 FRAME_-82951_CLASS_ID = -82951 FRAME_-82951_CENTER = -82 FRAME_-82951_RELATIVE = 'J2000' FRAME_-82951_DEF_STYLE = 'PARAMETERIZED' FRAME_-82951_FAMILY = 'TWO-VECTOR' FRAME_-82951_PRI_AXIS = 'X' FRAME_-82951_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82951_PRI_SPEC = 'RECTANGULAR' FRAME_-82951_PRI_VECTOR = ( 1.0, 0.0, 0.0 ) FRAME_-82951_PRI_FRAME = 'CASSINI_MIMI_INCA_LL' FRAME_-82951_SEC_AXIS = 'Z' FRAME_-82951_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82951_SEC_SPEC = 'RECTANGULAR' FRAME_-82951_SEC_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82951_SEC_FRAME = 'IAU_SATURN' \begintext XINCA Saturn Centered Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows The primary axis is the CASSINI spacecraft to Saturn vector and is labeled X. The secondary Z axis is the Z axis of the IAU_SATURN frame. The Y-axis completes the right-handed system. This frame is primarily used by the XINCA program. XINCA's skymap display is defined to display every frame with the Z axis up, X axis into the page and Y axis out to the left. So in the skymap, using this frame, into the page is the spacecraft to Saturn vector, Z axis or up is the Saturn spin axis. \begindata FRAME_CASSINI_SATURN_CENTERED = -82952 FRAME_-82952_NAME = 'CASSINI_SATURN_CENTERED' FRAME_-82952_CLASS = 5 FRAME_-82952_CLASS_ID = -82952 FRAME_-82952_CENTER = -82 FRAME_-82952_RELATIVE = 'J2000' FRAME_-82952_DEF_STYLE = 'PARAMETERIZED' FRAME_-82952_FAMILY = 'TWO-VECTOR' FRAME_-82952_PRI_AXIS = 'X' FRAME_-82952_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82952_PRI_OBSERVER = 'CASSINI' FRAME_-82952_PRI_TARGET = 'SATURN' FRAME_-82952_PRI_ABCORR = 'NONE' FRAME_-82952_SEC_AXIS = 'Z' FRAME_-82952_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82952_SEC_SPEC = 'RECTANGULAR' FRAME_-82952_SEC_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82952_SEC_FRAME = 'IAU_SATURN' \begintext XINCA Titan Centered Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows The primary axis is the CASSINI spacecraft to Titan vector and is labeled X. The secondary Z axis is the Z axis of the IAU_TITAN frame. The Y-axis completes the right-handed system. This frame is primarily used by the XINCA program. XINCA's skymap display is defined to display every frame with the Z axis up, X axis into the page and Y axis out to the left. So in the skymap, using this frame, into the page is the Cassini to Titan vector and Z or up is the Titan spin axis. \begindata FRAME_CASSINI_TITAN_CENTERED = -82953 FRAME_-82953_NAME = 'CASSINI_TITAN_CENTERED' FRAME_-82953_CLASS = 5 FRAME_-82953_CLASS_ID = -82953 FRAME_-82953_CENTER = -82 FRAME_-82953_RELATIVE = 'J2000' FRAME_-82953_DEF_STYLE = 'PARAMETERIZED' FRAME_-82953_FAMILY = 'TWO-VECTOR' FRAME_-82953_PRI_AXIS = 'X' FRAME_-82953_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82953_PRI_OBSERVER = 'CASSINI' FRAME_-82953_PRI_TARGET = 'TITAN' FRAME_-82953_PRI_ABCORR = 'NONE' FRAME_-82953_SEC_AXIS = 'Z' FRAME_-82953_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82953_SEC_SPEC = 'RECTANGULAR' FRAME_-82953_SEC_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82953_SEC_FRAME = 'IAU_TITAN' \begintext XINCA XINCA Pitch Gyrophase Frame ---------------------------------------------------------- \begindata FRAME_CASSINI_PITCH_GYROPHASE = -82954 FRAME_-82954_NAME = 'CASSINI_PITCH_GYROPHASE' FRAME_-82954_CLASS = 5 FRAME_-82954_CLASS_ID = -82954 FRAME_-82954_CENTER = -82 FRAME_-82954_RELATIVE = 'J2000' FRAME_-82954_DEF_STYLE = 'PARAMETERIZED' FRAME_-82954_FAMILY = 'TWO-VECTOR' FRAME_-82954_PRI_AXIS = 'Z' FRAME_-82954_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82954_PRI_SPEC = 'RECTANGULAR' FRAME_-82954_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82954_PRI_FRAME = 'J2000' FRAME_-82954_SEC_AXIS = 'X' FRAME_-82954_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82954_SEC_OBSERVER = 'CASSINI' FRAME_-82954_SEC_TARGET = 'SUN' FRAME_-82954_SEC_ABCORR = 'NONE' \begintext XINCA Saturn SKR Locked Frame ---------------------------------------------------------- This frame is a Saturn centered frame, similar to CASSINI_SATURN_CENTERED, as the primary axis is defined as the spacecraft-Saturn vector. However, instead of utilizing the rotation axis of Saturn as the definition of the proper clock angle about the primary axis, this frame uses the SKR prime meridian. This is, of course, inherently ill-posed when the spacecraft flies near Saturn's equatorial plane. \begindata FRAME_CASSINI_SATURN_SKR_LOCK = -82955 FRAME_-82955_NAME = 'CASSINI_SATURN_SKR_LOCK' FRAME_-82955_CLASS = 5 FRAME_-82955_CLASS_ID = -82955 FRAME_-82955_CENTER = -82 FRAME_-82955_RELATIVE = 'J2000' FRAME_-82955_DEF_STYLE = 'PARAMETERIZED' FRAME_-82955_FAMILY = 'TWO-VECTOR' FRAME_-82955_PRI_AXIS = 'X' FRAME_-82955_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82955_PRI_OBSERVER = 'CASSINI' FRAME_-82955_PRI_TARGET = 'SATURN' FRAME_-82955_PRI_ABCORR = 'NONE' FRAME_-82955_SEC_AXIS = 'Z' FRAME_-82955_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82955_SEC_SPEC = 'RECTANGULAR' FRAME_-82955_SEC_VECTOR = ( 1.0, 0.0, 0.0 ) FRAME_-82955_SEC_FRAME = 'CASSINI_SATURN_KM_RAD' \begintext XINCA Saturn SKR Locked Frame to SKR3 ---------------------------------------------------------- This frame is a Saturn centered frame, similar to CASSINI_SATURN_CENTERED, as the primary axis is defined as the spacecraft-Saturn vector. However, instead of utilizing the rotation axis of Saturn as the definition of the proper clock angle about the primary axis, this frame uses the SKR 3 prime meridian. This is, of course, inherently ill-posed when the spacecraft flies near Saturn's equatorial plane. \begindata FRAME_CASSINI_SATURN_SKR3_LOCK = -82980 FRAME_-82980_NAME = 'CASSINI_SATURN_SKR3_LOCK' FRAME_-82980_CLASS = 5 FRAME_-82980_CLASS_ID = -82980 FRAME_-82980_CENTER = -82 FRAME_-82980_RELATIVE = 'J2000' FRAME_-82980_DEF_STYLE = 'PARAMETERIZED' FRAME_-82980_FAMILY = 'TWO-VECTOR' FRAME_-82980_PRI_AXIS = 'X' FRAME_-82980_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82980_PRI_OBSERVER = 'CASSINI' FRAME_-82980_PRI_TARGET = 'SATURN' FRAME_-82980_PRI_ABCORR = 'NONE' FRAME_-82980_SEC_AXIS = 'Z' FRAME_-82980_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82980_SEC_SPEC = 'RECTANGULAR' FRAME_-82980_SEC_VECTOR = ( 1.0, 0.0, 0.0 ) FRAME_-82980_SEC_FRAME = 'CASSINI_SKR_SLS3' \begintext XINCA Saturn SKR Locked Frame to SKR4 South ---------------------------------------------------------- This frame is a Saturn centered frame, similar to CASSINI_SATURN_CENTERED, as the primary axis is defined as the spacecraft-Saturn vector. However, instead of utilizing the rotation axis of Saturn as the definition of the proper clock angle about the primary axis, this frame uses the SKR 4 South prime meridian. This is, of course, inherently ill-posed when the spacecraft flies near Saturn's equatorial plane. \begindata FRAME_CASSINI_SATURN_SKR4S_LOCK = -82981 FRAME_-82981_NAME = 'CASSINI_SATURN_SKR4S_LOCK' FRAME_-82981_CLASS = 5 FRAME_-82981_CLASS_ID = -82981 FRAME_-82981_CENTER = -82 FRAME_-82981_RELATIVE = 'J2000' FRAME_-82981_DEF_STYLE = 'PARAMETERIZED' FRAME_-82981_FAMILY = 'TWO-VECTOR' FRAME_-82981_PRI_AXIS = 'X' FRAME_-82981_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82981_PRI_OBSERVER = 'CASSINI' FRAME_-82981_PRI_TARGET = 'SATURN' FRAME_-82981_PRI_ABCORR = 'NONE' FRAME_-82981_SEC_AXIS = 'Z' FRAME_-82981_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82981_SEC_SPEC = 'RECTANGULAR' FRAME_-82981_SEC_VECTOR = ( 1.0, 0.0, 0.0 ) FRAME_-82981_SEC_FRAME = 'CASSINI_SKR_SLS4_SOUTH' \begintext XINCA Saturn SKR Locked Frame to SKR4 North ---------------------------------------------------------- This frame is a Saturn centered frame, similar to CASSINI_SATURN_CENTERED, as the primary axis is defined as the spacecraft-Saturn vector. However, instead of utilizing the rotation axis of Saturn as the definition of the proper clock angle about the primary axis, this frame uses the SKR 4 North prime meridian. This is, of course, inherently ill-posed when the spacecraft flies near Saturn's equatorial plane. \begindata FRAME_CASSINI_SATURN_SKR4N_LOCK = -82982 FRAME_-82982_NAME = 'CASSINI_SATURN_SKR4N_LOCK' FRAME_-82982_CLASS = 5 FRAME_-82982_CLASS_ID = -82982 FRAME_-82982_CENTER = -82 FRAME_-82982_RELATIVE = 'J2000' FRAME_-82982_DEF_STYLE = 'PARAMETERIZED' FRAME_-82982_FAMILY = 'TWO-VECTOR' FRAME_-82982_PRI_AXIS = 'X' FRAME_-82982_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82982_PRI_OBSERVER = 'CASSINI' FRAME_-82982_PRI_TARGET = 'SATURN' FRAME_-82982_PRI_ABCORR = 'NONE' FRAME_-82982_SEC_AXIS = 'Z' FRAME_-82982_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82982_SEC_SPEC = 'RECTANGULAR' FRAME_-82982_SEC_VECTOR = ( 1.0, 0.0, 0.0 ) FRAME_-82982_SEC_FRAME = 'CASSINI_SKR_SLS4_NORTH' \begintext Cassini MIMI CRTN Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [5]): The X axis (R) is the Cassini to Sun Vector. The Y axis (T) is the cross of the Sun spin axis with the R or X axis and the Z or N axis completes the right handed system. The SPICE frame definition follows: \begindata FRAME_CASSINI_CRTN = -82958 FRAME_-82958_NAME = 'CASSINI_CRTN' FRAME_-82958_CLASS = 5 FRAME_-82958_CLASS_ID = -82958 FRAME_-82958_CENTER = -82 FRAME_-82958_RELATIVE = 'J2000' FRAME_-82958_DEF_STYLE = 'PARAMETERIZED' FRAME_-82958_FAMILY = 'TWO-VECTOR' FRAME_-82958_PRI_AXIS = 'X' FRAME_-82958_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82958_PRI_OBSERVER = -82 FRAME_-82958_PRI_TARGET = 'SUN' FRAME_-82958_PRI_ABCORR = 'NONE' FRAME_-82958_SEC_AXIS = 'Z' FRAME_-82958_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82958_SEC_FRAME = 'IAU_SUN' FRAME_-82958_SEC_SPEC = 'RECTANGULAR' FRAME_-82958_SEC_VECTOR = ( 0.0, 0.0, 1.0 ) \begintext CASSINI_MIMI_LEMMS_AA ---------------------------------------------------------- This frame is a Sun centered frame. The Z axis is the Cassini-sun vector. The Y axis is parallel to the Sun spin axis. This is an attempt to duplicate the angle-angle frame used by the Angle Angle plots for LEMMS. The SPICE frame definition follows: \begindata FRAME_CASSINI_MIMI_LEMMS_AA = -82959 FRAME_-82959_NAME = 'CASSINI_MIMI_LEMMS_AA' FRAME_-82959_CLASS = 5 FRAME_-82959_CLASS_ID = -82959 FRAME_-82959_CENTER = -82 FRAME_-82959_RELATIVE = 'J2000' FRAME_-82959_DEF_STYLE = 'PARAMETERIZED' FRAME_-82959_FAMILY = 'TWO-VECTOR' FRAME_-82959_PRI_AXIS = 'Z' FRAME_-82959_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82959_PRI_OBSERVER = 'CASSINI' FRAME_-82959_PRI_TARGET = 'SUN' FRAME_-82959_PRI_ABCORR = 'NONE' FRAME_-82959_SEC_AXIS = '-Y' FRAME_-82959_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82959_SEC_FRAME = 'ECLIPJ2000' FRAME_-82959_SEC_SPEC = 'RECTANGULAR' FRAME_-82959_SEC_VECTOR = ( 0.0, 0.0, 1.0 ) \begintext Profile-Titan System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows: The Profile-Titan frame is a dynamically defined frame whose primary axis, labeled Z, is along the geometric Cassini-Titan vector. The Y-axis of this frame is chosen to be the cross product of the X axis, pointing in the direction of the Saturn north pole (Z axis of the IAU_SATURN frame), and this Z-axis. The diagram below attempts to illustrate this frame: X \ * \ Cassini \ Titan o. ./ `-. Y .'/ ` .' / Pole | .' Z | .' |.' * Saturn Figure: Profile-Titan System Frame The SPICE frame definition follows: \begindata FRAME_CASSINI_MIMI_PROF_TITAN = -82960 FRAME_-82960_NAME = 'CASSINI_MIMI_PROF_TITAN' FRAME_-82960_CLASS = 5 FRAME_-82960_CLASS_ID = -82960 FRAME_-82960_CENTER = 'CASSINI' FRAME_-82960_RELATIVE = 'J2000' FRAME_-82960_DEF_STYLE = 'PARAMETERIZED' FRAME_-82960_FAMILY = 'TWO-VECTOR' FRAME_-82960_PRI_AXIS = 'Z' FRAME_-82960_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82960_PRI_OBSERVER = 'CASSINI' FRAME_-82960_PRI_TARGET = 'TITAN' FRAME_-82960_PRI_ABCORR = 'NONE' FRAME_-82960_SEC_AXIS = 'X' FRAME_-82960_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82960_SEC_FRAME = 'IAU_SATURN' FRAME_-82960_SEC_SPEC = 'RECTANGULAR' FRAME_-82960_SEC_VECTOR = ( 0.0, 0.0, 1.0 ) \begintext From [3]: Geocentric Solar Ecliptic (GSE): This system has its X axis towards the Sun and its Z axis perpendicular to the plane of the Earth's orbit around the Sun (positive North). Y completes the right-handed system. The definition of the Geocentric Solar Ecliptic frame is as follows: \begindata FRAME_CASSINI_MIMI_GSE = -82961 FRAME_-82961_NAME = 'CASSINI_MIMI_GSE' FRAME_-82961_CLASS = 5 FRAME_-82961_CLASS_ID = -82961 FRAME_-82961_CENTER = 399 FRAME_-82961_RELATIVE = 'J2000' FRAME_-82961_DEF_STYLE = 'PARAMETERIZED' FRAME_-82961_FAMILY = 'TWO-VECTOR' FRAME_-82961_PRI_AXIS = 'X' FRAME_-82961_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82961_PRI_OBSERVER = 'EARTH' FRAME_-82961_PRI_TARGET = 'SUN' FRAME_-82961_PRI_ABCORR = 'NONE' FRAME_-82961_SEC_AXIS = '-Y' FRAME_-82961_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY' FRAME_-82961_SEC_OBSERVER = 'SUN' FRAME_-82961_SEC_TARGET = 'EARTH' FRAME_-82961_SEC_FRAME = 'J2000' FRAME_-82961_SEC_ABCORR = 'NONE' \begintext Cassini MIMI CASSINI_COROT_ENCELADUS ---------------------------------------------------------- This frame is a dynamically defined frame. It has as its primary axis the Saturn spin axis, labeled Z. The Y-axis is then defined to be the result of crossing this vector with the Saturn-Reference Enceladus vector. The X-axis completes the right-handed frame definition and is directed away from Saturn. The definition of the Corotation Enceladus frame is as follows: \begindata FRAME_CASSINI_COROT_ENCELADUS = -82962 FRAME_-82962_NAME = 'CASSINI_COROT_ENCELADUS' FRAME_-82962_CLASS = 5 FRAME_-82962_CLASS_ID = -82962 FRAME_-82962_CENTER = 602 FRAME_-82962_RELATIVE = 'J2000' FRAME_-82962_DEF_STYLE = 'PARAMETERIZED' FRAME_-82962_FAMILY = 'TWO-VECTOR' FRAME_-82962_PRI_AXIS = 'Z' FRAME_-82962_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82962_PRI_FRAME = 'IAU_SATURN' FRAME_-82962_PRI_SPEC = 'RECTANGULAR' FRAME_-82962_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82962_SEC_AXIS = 'X' FRAME_-82962_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82962_SEC_OBSERVER = 'SATURN' FRAME_-82962_SEC_TARGET = 'ENCELADUS' FRAME_-82962_SEC_ABCORR = 'NONE' \begintext Cassini MIMI INCA ECLIPJ2000 Frame with West Longitude ---------------------------------------------------------- This frame exists to allow ECLIPJ2000 to be expressed in a way familiar to space physicists, with west longitude instead of east longitude. This frame is defined such that ECLIPJ2000 except longitude starts at +X and counts up towards -Y. The matrix that rotates the ECLIPJ2000 frame into this configuration is: [ ] [ 1 0 0 ] [ ROT ] = [ 0 -1 0 ] [ ] [ 0 0 1 ] And the corresponding frame definition: \begindata FRAME_CASSINI_MIMI_ECLIPJ2000 = -82963 FRAME_-82963_NAME = 'CASSINI_MIMI_ECLIPJ2000' FRAME_-82963_CLASS = 4 FRAME_-82963_CLASS_ID = -82963 FRAME_-82963_CENTER = -82 TKFRAME_-82963_SPEC = 'MATRIX' TKFRAME_-82963_RELATIVE = 'ECLIPJ2000' TKFRAME_-82963_MATRIX = ( 1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0 ) \begintext Cassini ISMF Frame ---------------------------------------------------------- This frame exists to support the heliospheric ENA imaging activity. In emails from Don Mitchell and Ed Roelof the frame is defined, by default: Primary Axis: Along ISMF vector at -135 longitude, 45 latitude in the Ecliptic frame Secondary Axis: Directed towards Solar Apex at 254 longitude, 5 latitude in the Ecliptic frame Instead of specifying this frame as a fixed offset frame, class 4, we are using a dynamically defined frame with constant vectors. This will easily allow the tweaking of the frame definition from within an active SPICE application, by simply poking updated latitudes and longitudes into the definition. To update the latitude and longitude values for either the primary (ISMF pointing vector) or the secondary (longitude zero reference, nominally the solar apex): CALL PDPOOL ( 'FRAME_-82964_PRI_LONGITUDE', 1, LON_IN_DEGREES ) CALL PDPOOL ( 'FRAME_-82964_PRI_LATITUDE', 1, LAT_IN_DEGREES ) And for the secondary axis: CALL PDPOOL ( 'FRAME_-82964_SEC_LONGITUDE', 1, LON_IN_DEGREES ) CALL PDPOOL ( 'FRAME_-82964_SEC_LATITUDE', 1, LAT_IN_DEGREES ) If you wish to change the frame these latitude and longitude values are defined relative to: CALL PCPOOL ( 'FRAME_-82964_PRI_FRAME', 1, NEW_FRAME_STRING ) CALL PCPOOL ( 'FRAME_-82964_SEC_FRAME', 1, NEW_FRAME_STRING ) These values can be updated independently. If they wish to leave the Solar Apex direction the same, but adjust the ISMF primary vector relative to GALACTIC coordinates, then only update the PRI_FRAME keyword to GALACTIC. Note: I have defined the center of this frame to be the Solar System Barycenter for the purposes of light time corrections through the frame. This seemed most appropriate in the moment. \begindata FRAME_CASSINI_ISMF = -82964 FRAME_-82964_NAME = 'CASSINI_ISMF' FRAME_-82964_CLASS = 5 FRAME_-82964_CLASS_ID = -82964 FRAME_-82964_CENTER = 0 FRAME_-82964_RELATIVE = 'J2000' FRAME_-82964_DEF_STYLE = 'PARAMETERIZED' FRAME_-82964_FAMILY = 'TWO-VECTOR' FRAME_-82964_PRI_AXIS = 'Z' FRAME_-82964_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82964_PRI_SPEC = 'LATITUDINAL' FRAME_-82964_PRI_FRAME = 'ECLIPJ2000' FRAME_-82964_PRI_UNITS = 'DEGREES' FRAME_-82964_PRI_LONGITUDE = -135.0D0 FRAME_-82964_PRI_LATITUDE = 45.0D0 FRAME_-82964_SEC_AXIS = 'X' FRAME_-82964_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82964_SEC_SPEC = 'LATITUDINAL' FRAME_-82964_SEC_FRAME = 'ECLIPJ2000' FRAME_-82964_SEC_UNITS = 'DEGREES' FRAME_-82964_SEC_LONGITUDE = 254.0D0 FRAME_-82964_SEC_LATITUDE = 5.0D0 \begintext Cassini ISMF_X Frame ---------------------------------------------------------- See the Cassini ISMF Frame description for more details. This frame is exactly the same except the Z and X axis have been switched since we are attempting to duplicate the display format for the IBEX mission. \begindata FRAME_CASSINI_ISMF_X = -82965 FRAME_-82965_NAME = 'CASSINI_ISMF_X' FRAME_-82965_CLASS = 5 FRAME_-82965_CLASS_ID = -82965 FRAME_-82965_CENTER = 0 FRAME_-82965_RELATIVE = 'J2000' FRAME_-82965_DEF_STYLE = 'PARAMETERIZED' FRAME_-82965_FAMILY = 'TWO-VECTOR' FRAME_-82965_PRI_AXIS = 'X' FRAME_-82965_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82965_PRI_SPEC = 'LATITUDINAL' FRAME_-82965_PRI_FRAME = 'ECLIPJ2000' FRAME_-82965_PRI_UNITS = 'DEGREES' FRAME_-82965_PRI_LONGITUDE = -135.0D0 FRAME_-82965_PRI_LATITUDE = 45.0D0 FRAME_-82965_SEC_AXIS = 'Z' FRAME_-82965_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82965_SEC_SPEC = 'LATITUDINAL' FRAME_-82965_SEC_FRAME = 'ECLIPJ2000' FRAME_-82965_SEC_UNITS = 'DEGREES' FRAME_-82965_SEC_LONGITUDE = 254.0D0 FRAME_-82965_SEC_LATITUDE = 5.0D0 \begintext XINCA Saturn Equatorial Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The Y axis is the Z axis of the CASSINI_SATURN_EQU_SOLAR frame and the -Z axis is the X axis of the CASSINI_SATURN_EQU_SOLAR. This frame is primarily used by XINCA. XINCA's skymap display is defined to display every frame with the Z axis up, X axis into the page and Y axis out to the left. So in the skymap, using this frame, the negative spin axis of Saturn goes into the page, and the sun is to the right. The SPICE frame definition follows: \begindata FRAME_CASSINI_SZS_XY_PLANE = -82966 FRAME_-82966_NAME = 'CASSINI_SZS_XY_PLANE' FRAME_-82966_CLASS = 4 FRAME_-82966_CLASS_ID = -82966 FRAME_-82966_CENTER = 699 TKFRAME_-82966_SPEC = 'MATRIX' TKFRAME_-82966_RELATIVE = 'CASSINI_SATURN_EQU_SOLAR' TKFRAME_-82966_MATRIX = ( 0.0, 0.0, -1.0, -1.0, 0.0, 0.0, 0.0, 1.0, 0.0 ) \begintext SATURN SZS Z projected Frame ---------------------------------------------------------- This dynamic plane is defined with the Y axis of the frame is the Z axis of the CASSINI_SATURN_EQU_SOLAR frame and the -Z axis of the frame is the Cassini to Saturn vector. XINCA's skymap display is defined to display every frame with the Z axis up, X axis into the page and Y axis out to the left. So in the skymap, using this frame, spin axis of Saturn to the left, and down direction is the Cassini to Saturn direction. This frame is primarily used by the XINCA program to project the data into a plane which is defined to contain the spin axis of Saturn with a normal which is the XY projection of the Saturn to Cassini vector. \begindata FRAME_CASSINI_SC2SAT_SPIN_PLN = -82967 FRAME_-82967_NAME = 'CASSINI_SC2SAT_SPIN_PLN' FRAME_-82967_CLASS = 5 FRAME_-82967_CLASS_ID = -82967 FRAME_-82967_CENTER = 699 FRAME_-82967_RELATIVE = 'J2000' FRAME_-82967_DEF_STYLE = 'PARAMETERIZED' FRAME_-82967_FAMILY = 'TWO-VECTOR' FRAME_-82967_PRI_AXIS = 'Y' FRAME_-82967_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82967_PRI_FRAME = 'CASSINI_SATURN_EQU_SOLAR' FRAME_-82967_PRI_SPEC = 'RECTANGULAR' FRAME_-82967_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82967_SEC_AXIS = '-Z' FRAME_-82967_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82967_SEC_OBSERVER = 'CASSINI' FRAME_-82967_SEC_TARGET = 'SATURN' FRAME_-82967_SEC_ABCORR = 'NONE' \begintext SKR SLS4 Frames ---------------------------------------------------------- Saturn appears to have a different rotational period for the northern and southern hemispheres, and the following two frames, CASSINI_SKR_SLS4_NORTH and CASSINI_SKR_SLS4_SOUTH attempt to capture these rotating frames. Each frame has +Z as the spin axis of Saturn (+Z in the IAU_SATURN frame, and also +Z in the SZS frame) and is offset from the IAU_SATURN frame by a rotation about the Z axis. But note that this rotational offset changes with time, and since it covers such a long time period, it is not practical to describe the offset as a single polynomial. So we put the offset into a C-Kernel. These frame definitions are specified by the plasma wave team (RPWS) and are meant to characterize the variable rotation rate of Saturn. Previous SLS frames were defined using polynomials, but this set of frames were not defined using coefficients. Rather they were only available through a web form at the University of Iowa. We captured the data output from the web request mechanism and put it into a C-Kernel. The C-Kernel is based on hourly data points. We also tried one-minute resolution output from the site in making the C-Kernel, but the difference between these two frames was a rotation of at most 0.01 degrees, and usually much less, so hourly resolution was good enough. The C-Kernels based on the hourly resolution data were only about 2 to 4 Mb each, whereas with minute resolution, it was hundreds of Mb, so the hourly resolution wins. The definition of the SLS4 frame is available here: http://www-pw.physics.uiowa.edu/SLS4/ and also see the paper: D.A. Gurnett, J.B. Groene, T.F. Averkamp, W.S. Kurth, S.-Y. Ye, and G. Fischer, A SLS4 Longitude System Based on a Tracking Filter Analysis of the Rotational Modulation of Saturn Kilometric Radiation, Planetary Radio Emissions VII, Eds. Rucker, H.O., W.S. Kurth, P. Louarn, G. Fischer, Austrian Academy of Sciences Press, in press, June. 2011. \begindata FRAME_CASSINI_SKR_SLS4_SOUTH = -82970 FRAME_-82970_NAME = 'CASSINI_SKR_SLS4_SOUTH' FRAME_-82970_CLASS = 3 FRAME_-82970_CLASS_ID = -82970 FRAME_-82970_CENTER = 699 CK_-82970_SCLK = -82 CK_-82970_SPK = 699 \begintext \begindata FRAME_CASSINI_SKR_SLS4_NORTH = -82971 FRAME_-82971_NAME = 'CASSINI_SKR_SLS4_NORTH' FRAME_-82971_CLASS = 3 FRAME_-82971_CLASS_ID = -82971 FRAME_-82971_CENTER = 699 CK_-82971_SCLK = -82 CK_-82971_SPK = 699 \begintext SKR N and S frames from L. Lamy at Meudon ----------------------------------------------------- These frames define a phase system for Saturn's rotation based on on interpretation of SKR by L. Lamy. See this web Page: http://www.lesia.obspm.fr/kronos/skr_periodicity.php and also the paper Lamy, submitted, 2012 (also available for a while at above URL) for more details. I've defined these frames using data at the above web site, and I used a decimated version of that data (downloaded on May 23, 2012) to create c-kernels that define the planet rotation over the time range of the provided data. Note that the paper defines a frame with a default offset for the SKR peak of 0 degrees, but I've used the more traditional 100 degrees, so the c-kernels that specify this frame are 100 degrees off from Lamy's formal definition, but they are directly comparable with the SLS4 frame from Gurnett. Like the SLS4 frames, this frame is defined off the SZS frame. (Note that SZS is called CASSINI_SATURN_EQU_SOLAR in the Cassini/MIMI frame kernel.) So you will need access to the SZS frame to make use of this frame. The SLSM frames (North and South) differ from SZS by a rotation about their common Z axis. The time range of validity for SLSM South is 2004 day of year 1 up to the start of day 193 of 2010. The time range of validity for SLSM North is 2005 day of year 84 up to the start of day 193 of 2010. \begindata FRAME_CASSINI_SKR_SLSM_SOUTH = -82972 FRAME_-82972_NAME = 'CASSINI_SKR_SLSM_SOUTH' FRAME_-82972_CLASS = 3 FRAME_-82972_CLASS_ID = -82972 FRAME_-82972_CENTER = 699 CK_-82972_SCLK = -82 CK_-82972_SPK = 699 \begintext \begindata FRAME_CASSINI_SKR_SLSM_NORTH = -82973 FRAME_-82973_NAME = 'CASSINI_SKR_SLSM_NORTH' FRAME_-82973_CLASS = 3 FRAME_-82973_CLASS_ID = -82973 FRAME_-82973_CENTER = 699 CK_-82973_SCLK = -82 CK_-82973_SPK = 699 \begintext Jupiter Equatorial System Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows (from [6]): The primary axis, labeled Z, is parallel to the Saturn spin axis. The Y-axis is then defined as the cross product of this vector with the Jupiter-Sun vector. The X-axis completes the right-handed system and is directed "towards" the Sun. The diagram below attempts to illustrate this frame: | Z | | o Jupiter ./ \ .'/ \ .' / X \ .' Y .' .' * Sun Figure: The Jupiter Equatorial System Frame In the poorly rendered diagram above, Y is normal to the plane defined by Jupiter's Spin axis (Z) and the Jupiter-Sun vector. X lies in this plane directed towards the Sun. The SPICE frame definition follows: \begindata FRAME_CASSINI_JUPITER_EQU_SOLAR = -82976 FRAME_-82976_NAME = 'CASSINI_JUPITER_EQU_SOLAR' FRAME_-82976_CLASS = 5 FRAME_-82976_CLASS_ID = -82976 FRAME_-82976_CENTER = 599 FRAME_-82976_RELATIVE = 'J2000' FRAME_-82976_DEF_STYLE = 'PARAMETERIZED' FRAME_-82976_FAMILY = 'TWO-VECTOR' FRAME_-82976_PRI_AXIS = 'Z' FRAME_-82976_PRI_VECTOR_DEF = 'CONSTANT' FRAME_-82976_PRI_FRAME = 'IAU_JUPITER' FRAME_-82976_PRI_SPEC = 'RECTANGULAR' FRAME_-82976_PRI_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82976_SEC_AXIS = 'X' FRAME_-82976_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82976_SEC_OBSERVER = 'JUPITER' FRAME_-82976_SEC_TARGET = 'SUN' FRAME_-82976_SEC_ABCORR = 'NONE' \begintext XINCA Jupiter Centered Frame ---------------------------------------------------------- This frame is a dynamically defined frame, defined as follows The primary axis is the CASSINI spacecraft to Jupiter vector and is labeled X. The secondary Z axis is the Z axis of the IAU_Jupiter frame. The Y-axis completes the right-handed system. This frame is primarily used by the XINCA program. XINCA's skymap display is defined to display every frame with the Z axis up, X axis into the page and Y axis out to the left. So in the skymap, using this frame, into the page is the spacecraft to Jupiter vector, Z axis or up is the Jupiter spin axis. \begindata FRAME_CASSINI_JUPITER_CENTERED = -82947 FRAME_-82947_NAME = 'CASSINI_JUPITER_CENTERED' FRAME_-82947_CLASS = 5 FRAME_-82947_CLASS_ID = -82947 FRAME_-82947_CENTER = -82 FRAME_-82947_RELATIVE = 'J2000' FRAME_-82947_DEF_STYLE = 'PARAMETERIZED' FRAME_-82947_FAMILY = 'TWO-VECTOR' FRAME_-82947_PRI_AXIS = 'X' FRAME_-82947_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82947_PRI_OBSERVER = 'CASSINI' FRAME_-82947_PRI_TARGET = 'JUPITER' FRAME_-82947_PRI_ABCORR = 'NONE' FRAME_-82947_SEC_AXIS = 'Z' FRAME_-82947_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82947_SEC_SPEC = 'RECTANGULAR' FRAME_-82947_SEC_VECTOR = ( 0.0, 0.0, 1.0 ) FRAME_-82947_SEC_FRAME = 'IAU_JUPITER' \begintext Cassini MIMI MAG RTN Frame ---------------------------------------------------------- This frame is a dynamically defined frame. The RTN coordinates consist of R (radial component, Sun to the spacecraft), T (tangential component, parallel to the Solar Equatorial plane and perpendicular to R), and N (normal component, completes right handed set). This frame is used to transform MAG PDS data. The SPICE frame definition follows: \begindata FRAME_CASSINI_MIMI_MAG_RTN = -82978 FRAME_-82978_NAME = 'CASSINI_MIMI_MAG_RTN' FRAME_-82978_CLASS = 5 FRAME_-82978_CLASS_ID = -82978 FRAME_-82978_CENTER = 'SUN' FRAME_-82978_RELATIVE = 'J2000' FRAME_-82978_DEF_STYLE = 'PARAMETERIZED' FRAME_-82978_FAMILY = 'TWO-VECTOR' FRAME_-82978_PRI_AXIS = 'X' FRAME_-82978_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82978_PRI_OBSERVER = 'SUN' FRAME_-82978_PRI_TARGET = -82 FRAME_-82978_PRI_ABCORR = 'NONE' FRAME_-82978_SEC_AXIS = 'Z' FRAME_-82978_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82978_SEC_FRAME = 'IAU_SUN' FRAME_-82978_SEC_SPEC = 'RECTANGULAR' FRAME_-82978_SEC_VECTOR = ( 0.0, 0.0, 1.0 ) \begintext Cassini MIMI MAG KRTP Frame ---------------------------------------------------------- This frame is a dynamically defined frame. These are the 3 definitions I found in the PDS descriptions. I included all. This frame is used to transform MAG PDS data. Kronographic body-fixed, J2000 spherical Coordinates (KRTP) ----------------------------------------------------------- KRTP magnetic field vector components form the standard right handed spherical triad (R, Theta, Phi) for a planet centered system. Namely, R is radial (along the line from the center of Saturn to the center of the spacecraft), and positive away from Saturn. Phi, the azimuthal component, is parallel to the Kronographic equator (Omega x R) and positive in the direction of corotation. Theta, the 'southward' component, completes the right handed set. KRTP coordinates are the standard right-handed spherical triad: R (Saturn to spacecraft) Phi (parallel to Saturn's equator) Theta (completes right handed set). X is Saturn to S/C; Y (=THETA) is south in plane containing X and Saturn Axis. The SPICE frame definition follows: \begindata FRAME_CASSINI_MIMI_MAG_KRTP = -82979 FRAME_-82979_NAME = 'CASSINI_MIMI_MAG_KRTP' FRAME_-82979_CLASS = 5 FRAME_-82979_CLASS_ID = -82979 FRAME_-82979_CENTER = -82 FRAME_-82979_RELATIVE = 'J2000' FRAME_-82979_DEF_STYLE = 'PARAMETERIZED' FRAME_-82979_FAMILY = 'TWO-VECTOR' FRAME_-82979_PRI_AXIS = 'X' FRAME_-82979_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_-82979_PRI_OBSERVER = 'SATURN' FRAME_-82979_PRI_TARGET = 'CASSINI' FRAME_-82979_PRI_ABCORR = 'NONE' FRAME_-82979_SEC_AXIS = 'Y' FRAME_-82979_SEC_VECTOR_DEF = 'CONSTANT' FRAME_-82979_SEC_FRAME = 'IAU_SATURN' FRAME_-82979_SEC_SPEC = 'RECTANGULAR' FRAME_-82979_SEC_VECTOR = ( 0.0, 0.0, -1.0 ) \begintext End of FK.