KPL/IK SIMBIO-SYS Instrument Kernel ============================================================================= This instrument kernel (I-kernel) contains references to mounting alignment, operating modes, and timing as well as internal and FOV geometry for the BepiColombo Spectrometers and Imagers Integrated Observatory SYStem (SIMBIO-SYS) Version and Date ----------------------------------------------------------------------------- Version 0.9 -- February 1, 2023 -- Marc Costa Sitja, ESAC/ESA Ricardo Valles Blanco, ESAC/ESA Fixed several typos. Version 0.8 -- September 10, 2021 -- Ricardo Valles Blanco, ESAC/ESA Marc Costa Sitja, NAIF/JPL Cristina Re, INAF Fixed typos for PDS4 Bundle release version 1.0. Updated VIHI descriptions and VIHI detector CCD parameters. Version 0.7 -- July 7, 2020 -- Cristina Re, INAF Marc Costa Sitja, ESAC/ESA Added STC, VIHI and HRIC Optical distortion. Version 0.6 -- March 24, 2020 -- Marc Costa Sitja, ESAC/ESA Cristina Re, INAF Corrected MPO_SIMBIO-SYS_VIHI frame and added FOV names. Removed Platform ID section. Version 0.5 -- October 28, 2018 -- Marc Costa Sitja, ESAC/ESA Minor description updates. Version 0.4 -- June 28, 2018 -- Cristina Re, INAF Updated the split version of the STC focal plane. Change in the definition of the axes in the drawing since the definition of the offsets of the filters have been considered as a rotation with respect the +Y axis and not the +X axis. Alignment information has been moved from the IK to the FK. Version 0.3 -- March 8, 2018 -- Cristina Re, INAF Marc Costa Sitja, ESAC/ESA As an outcome of the first review of the kernel by the SIMBIO-SYS Instrument Team updates on FoV names an ids, instrument descriptions and FoV definitions have been performed. Version 0.2 -- February 15, 2017 -- Marc Costa Sitja, ESAC/ESA Updated instrument description. Added FOV and sensor definitions for STC-L and STC-H filters and updated the rest of the definitions. Replaced SIMBIOSYS references by SIMBIO-SYS. Pending review from the SIMBIO-SYS instrument team and the BepiColombo SGS. Version 0.1 -- February 22, 2016 -- Marc Costa Sitja, ESAC/ESA Updated BEPICOLOMBO MPO IDs from -69 to -121. Removed kernel name and version assignment. Version 0.0 -- February 22, 2013 -- Jonathan McAuliffe, ESAC/ESA Initial prototype release. References ----------------------------------------------------------------------------- 1. ``Kernel Pool Required Reading'', NAIF. 2. BepiColombo MPO Spacecraft Frames Kernel (FK), Latest Version 3. ``Frames Required Reading'', NAIF. 4. ``C-Kernel Required Reading'', NAIF. 5. ``SIMBIO-SYS EID-B'', BC-EST-RS-02523, Issue 1, 25th September 2012 6. ``BepiColombo SIMBIO-SYS User Manual'', BC-SIM-GAF-MA-002, Issue 1, Revision 5, 8th April 2016 7. ``Preliminary results of the optical calibration for the stereo camera STC onboard the BepiColombo mission'', International Conference on Space Optics 2014 Tenerife, Canary Islands, Spain, October 2014 8. ``VIS-NIR Imaging Spectroscopy of Mercury's Surface: SIMBIO-SYS/VIHI Experiment Onboard the BepiColombo Mission'', proceedings for IEEE Transactions on Geoscience and Remote Sensing, 2010 9. Email from Cristina Re (INAF) ``SIMBIO Ik and fk revision'' on 28th June 2018. 10. Simioni, Emanuele, et al. "SIMBIO-SYS/STC stereo camera calibration: Geometrical distortion." Review of Scientific Instruments 90.4 (2019): 043106. 11. Filacchione, Gianrico, et al. "The pre-launch characterization of SIMBIO-SYS/VIHI imaging spectrometer for the BepiColombo mission to Mercury. I. Linearity, radiometry, and geometry calibrations." Review of Scientific Instruments 88.9 (2017): 094502. 12. A. E. Conrady, Decentred Lens-Systems, Monthly Notices of the Royal Astronomical Society, Volume 79, Issue 5, March 1919, Pages 384-390. Contact Information ----------------------------------------------------------------------------- If you have any questions regarding this file contact the ESA SPICE Service at ESAC: Alfredo Escalante Lopez (+34) 91-8131-429 spice@sciops.esa.int or NAIF at JPL: Boris Semenov +1 (818) 354-8136 Boris.Semenov@jpl.nasa.gov Implementation Notes ----------------------------------------------------------------------------- This file is used by the SPICE system as follows: programs that make use of this frame kernel must "load" the kernel normally during program initialization. Loading the kernel associates the data items with their names in a data structure called the "kernel pool". The SPICELIB routine FURNSH loads a kernel into the pool as shown below: FORTRAN: (SPICELIB) CALL FURNSH ( frame_kernel_name ) C: (CSPICE) furnsh_c ( frame_kernel_name ); IDL: (ICY) cspice_furnsh, frame_kernel_name MATLAB: (MICE) cspice_furnsh ( 'frame_kernel_name' ) PYTHON: (SPICEYPY)* furnsh( frame_kernel_name ) In order for a program or routine to extract data from the pool, the SPICELIB routines GDPOOL, GIPOOL, and GCPOOL are used. See [1] for more details. This file was created and may be updated with a text editor or word processor. * SPICEYPY is a non-official, community developed Python wrapper for the NAIF SPICE toolkit. Its development is managed on Github. It is available at: https://github.com/AndrewAnnex/SpiceyPy Naming Conventions ----------------------------------------------------------------------------- All names referencing values in this I-kernel start with the characters 'INS' followed by the NAIF BepiColombo MPO spacecraft ID number (-121) and then followed by a NAIF three digit code for an SIMBIO-SYS camera (HRIC = 610, STC = 620, VIHI = 630). The remainder of the name is an underscore character followed by the unique name of the data item. For example, the HRIC boresight direction in the MPO_SIMBIO-SYS_HRIC frame (see [3]) is specified by: INS-121610_BORESIGHT The upper bound on the length of the name of any data item identifier is 32 characters. If the same item is included in more than one file, or if the same item appears more than once within a single file, the latest value supersedes any earlier values. Mounting Alignment ----------------------------------------------------------------------------- Refer to the latest version of the BepiColombo MPO Frames Definition Kernel (FK) [3] for the SIMBIO-SYS reference frame definitions and mounting alignment information. Description ----------------------------------------------------------------------------- From [6] and [7]: SIMBIO-SYS has been conceived to be integrated on the BepiColombo MPO pointing in the nadir direction in order to perform the remote sensing of the Mercury surface during the satellite orbits. The SIMBIO-SYS instrument architecture is based on 3 different channels composing the instrument front-end with a common main electronics and power supply. Each channel is composed of optics, detector (Focal Plane Assembly), thermal hardware (if needed), proximity electronics and electrical interface for power supply and data handling. From an electrical point of view, the Main Electronics (ME) implements, at suite level, the two main functions shared among the three channels to avoid duplication, namely: - data processing electronics function - power supply The first function, implemented by the two redundant Digital Processing Units (DPU's), is mainly devoted to data management and compression, instrument control and TC/TM handling from/to the S/C interface. The second one, implemented by the Power Unit (PU), is aimed to supply all the subsystems with the required power, providing a common set of required voltages. Science Objectives: ~~~~~~~~~~~~~~~~~~~ The SIMBIO-SYS instrument suite incorporates capabilities to perform: - global mapping with stereo imaging (spatial resolution: 50-110m and vertical accuracy of 84m at the periherm on the equator) - colour mapping of selected regions in 4 broad band filters (in the range 410-930nm) - global mapping with spectroscopy in the spectral range 400-2000 nm (spectral sampling of 6.25nm), with a spatial resolution better than 500m - high spatial resolution (5-10m) imaging of selected areas summing up to at least 20% of planet surface in a panchromatic filter and in 3 different broad band filters (in the range 400-900nm) - hyperspectral imaging of selected areas in the spectral range 400-2000nm (spectral sampling of 6.25nm), with a spatial sampling down to 100m Measurement Principle: ~~~~~~~~~~~~~~~~~~~~~~ The above scientific objectives are achieved by the capabilities of the three channels composing the SIMBIO-SYS suite: - HRIC High Resolution Camera - STC Stereo Camera - VIHI Spectrometer Such configuration allows maximising the scientific return in each phase of the mission by the suitable share of the available resources in terms of power and data rate. HRIC High Resolution Camera: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The SYMBIO-SYS High Resolution Imaging Channel (HRIC) aims to provide: - images at ground pixel size of 5m / pxl at 400km, - high spatial resolution images of selected regions (>20% of planet's surface), - high spatial resolution images in one panchromatic and 3 broad-band filters It consists of a high spatial resolution imaging push frame channel operating in the visible with Ritchey-Chretien optics modified with correcting lenses. The following table summarizes the instrument optics, performances and resolution: Parameter | Units | Value/Description Remarks -------------------------+--------------+---------------------------- Optics | | | | Aperture | mm | 90 Focal length | mm | 800 Focal number | # | 8.9 Field of view | degrees | 1.47 Central obstruction | % | 10 (area) Spectral range | nm | 400-900 Filter bandwidth | nm | 40/500 Spectral Channels | nm | Panchromatic; F550; | | F750; F880 (Filters) MTF at Nyquist | % | 33-30 (respectively frequency | | on-axis and in field) | | Sensor | | | | Sensor type | # | Si-PiN-Hybrid Format | # | 2048x2048 Pixel size | microm | 10x10 Spectral Range | nm | 400 to 1000 Global Quantum | % | >42 from 400 to 800 nm | % | >24 from 800 to 900 nm | % | >10 from 900 to 950 nm MTF at Nyquist | % | >50 frequency | | Read Noise at 293K | e- | <100 Dark Signal at 293K | e-/s | <10000 (max. 40000) DSNU at 293K | % | <5 (rms) Exposure time | ms | 0.04 - 4 (during Mercury | | observations) Imaging sequence | s | 0.71 (Nominal Mode) duration | | Readout | Mpix/s | <5 Spurious charge | e-/s | <100 ( 273K < T < 293K ) Not operating | K | 213 % 333 Temperature range | | Operating | K | 268 % 298 temperature | | Linearity | % | < +/- 1 | | (between 10 % 100 Ke-) Power Dissipation | W | <0.1 FPN | mV | <15 (max. 30) CVF at 273K | microV/e- | ~15 | | Resolution | | | | Spectral resolution | nm | Broad Band 40; | | Pancromatic 500 IFOV | microrad/px | 12.5 Ground pixel scale | m/pixel | 5 at 400 km Dwell Time | | At Periherm | ms | 1.9 At Apoherm | ms | 14 | | STC Stereo Camera: ~~~~~~~~~~~~~~~~~~ The SYMBIO-SYS Stereo imaging Channel (STC) aims to perform Global stereo mapping at moderate resolution and colour mapping of selected regions. It is a moderate resolution push-frame camera for stereo and colour imaging with Catadioptric optics (Modified Schmidt with correcting doublet). The STC instrument consists in a novel concept of stereo-camera: two sub-channels looking at +/- 20 degrees from nadir which share most of the optical components and the detector. Being the detector a 2D matrix, STC is able to adopt the push-frame acquisition technique instead of the much common push-broom one. The camera has the capability of imaging in five different spectral bands: one panchromatic and four intermediate bands, in the range between 410 and 930 nm. To avoid mechanisms, the technical solution chosen for the filters is the single substrate stripe-butted filter in which different glass pieces, with different transmission properties, are glued together and positioned just in front of the detector. The useful field of view (FOV) of each sub-channel, though divided in 3 strips, is about 5.39 x 3.07 degrees. The optical design, a modified Schmidt layout, is able to guarantee that over all the FOV the diffraction Ensquared Energy inside one pixel of the detector is of the order of 70-80%. The following table summarizes the instrument optics, performances and resolution: Parameter | Units | Value/Description Remarks -------------------------+--------------+---------------------------- Optics | | | | Aperture | mm | 15 Focal length | mm | 95.2 Focal number | # | 6.3 Field of view | degrees | 5.39 x 4.75 (Across-Track | | x Along-Track per sub-ch) Central obstruction | % | 0 Spectral range | nm | 410-930 Spectral Channels | | Panchromatic | | Filter IC | nm | 700 (6 filters: Coloured Filters | | 2xPanchromatic, F420 | | , F550, F750, F920) Blue IC | nm | 420 Green IC | nm | 550 NIR1 IC | nm | 750 NIR2 IC | nm | 920 Filter bandwidth | nm | 20/200 (4 broad band | | -coloured- filters / | | panchromatic filter) Ensquared Energy | % | >70 per pixel | | | | Sensor | | | | Sensor type | # | Si-PiN-Hybrid CMOS Pixel lines in | # | 2048 array | | Pixels per array | # | 2048 line | | Pixel size | microm | 10 Readout | Mpix/s | <5 A/D Conversion | Bit/pix | 14 Spectral Range | nm | 400 to 930 Windowing | # | Yes Capability | | | | Resolution | | | | Angular resolution | mrad/pix | 105 Spatial resolution | m | 50 (400 km alt at | | Periherm at 21.4 deg | | from Nadir) Vertical Accuracy | m | 80 (400 km alt at | | Periherm) | | VIHI Spectrometer: ~~~~~~~~~~~~~~~~~~ The SYMBIO-SYS Visual and Infrared Hyperspectral Imager (VIHI) aims to perform: - global Hyperspectral imaging of the planetary surface with a resolution better than 500m in the spectral range 400 and 2000nm and a spectral resolution of 6.25nm/pixel, - 5 to 10% surface coverage with best spatial sampling capability (100m) in the same spectral range and with the same spectral resolution as above. It is a moderate resolution Hyperspectral push broom Imager -spectrometer- for the visual and near infrared band with Schmidt modified telescope with Littrow grating spectrometer. The following table summarizes the instrument optics, performances and resolution: Parameter | Units | Value/Description Remarks -------------------------+--------------+---------------------------- Optics | | | | Aperture | mm | 25 (Diameter) Focal length | mm | 160 Focal number | # | 6.4 Field of view | degrees | 3.7 Central obstruction | % | 0 Pixel IFOV | microrad | 250 Scale per per pixel | m/px | 100 at 400km Spectral range | nm | 400-2000 Spectral channels | # | 256 Spectral dispersion | nm/pix | 6.25 | | Sensor | | | | Sensor type | # | Hybrid HgCdTe Pixel lines | # | 264 Pixels per line | # | 264 Pixel pitch | microm | 40 Peak quantum | % | >50 efficiency | | Full well capacity | e- | >2x10^6 Order suppression | # | Yes Filters | | Operating temp | K | 210 % 225 Exposure time | ms | 10 (min value at Periherm) | | Resolution | | | | Spectral resolution | lambda/ | 64 (at 400nm ) - | del(lambda) | 320 (at 2000nm) Angular resolution | microrad/px | 250 Spatial sampling | m/pixel | 100 at 400 km | m/pixel | 375 at 1500 km Dwell Time | | At Periherm | ms | 38 at 400km At Apoherm | ms | 275 at 1500km | | Detector Layouts ----------------------------------------------------------------------------- This section provides a set of diagrams illustrating the SIMBIO-SYS HRIC, STC and VIHI camera detector layouts in the corresponding camera reference frames. High Resolution Imaging Camera (HRIC): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The HRIC detector consists of 1 panchromatic and 3 broadband filters. They cover the detector in the order shown in the table below with inter-filter gaps: -------------- -------- --------- --------- --------- Parameter* Gap F750 Gap P880 ... -------------- -------- --------- --------- --------- V Pixels 2 384 84 384 ... V FOV 0.001432 0.275020 0.060161 0.275020 V FOV Start 0.733386 0.731954 0.456934 0.396773 | V FOV Stop 0.731954 0.456934 0.396773 0.121754 | V FOV Center 0.732670 0.594444 0.426854 0.259263 '----> continues V First Pixel 1 3 387 471 V Last Pixel 2 386 470 854 H Pixels 2048 2048 2048 2048 H FOV 1.470 1.470 1.470 1.470 H FOV Start -0.735 -0.735 -0.735 -0.735 H FOV Stop 0.735 0.735 0.735 0.735 H FOV Center 0 0 0 0 H First Pixel 1 1 1 1 H Last Pixel 2048 2048 2048 2048 ------------- --------- --------- --------- --------- -------------- --------- --------- --------- --------- --------- Parameter* ... Gap FPAN Gap F550 Gap -------------- --------- --------- --------- --------- --------- V Pixels ... 84 640 84 384 2 V FOV 0.060161 0.458366 0.060161 0.275020 0.001432 V FOV Start 0.121754 0.061593 -0.396773 -0.456934 -0.731954 V FOV Stop 0.061593 -0.396773 -0.456934 -0.731954 -0.733386 V FOV Center 0.091673 -0.167590 -0.426854 -0.594444 -0.732670 V First Pixel 855 939 1579 1663 2047 V Last Pixel 938 1578 1662 2046 2048 H Pixels 2048 2048 2048 2048 2048 H FOV 1.470 1.470 1.470 1.470 1.470 H FOV Start -0.735 -0.735 -0.735 -0.735 -0.735 H FOV Stop 0.735 0.735 0.735 0.735 0.735 H FOV Center 0 0 0 0 0 H First Pixel 1 1 1 1 1 H Last Pixel 2048 2048 2048 2048 2048 ------------- - -------- --------- --------- ---------- -------- * all FOV values above are in degrees * V or Vertical implies along-track * H or Horizontal implies across-track ^ +Xhric (S/C velocity/along track) | Pixel | (1,1)---------------|-----------------+ | /////////////// | /////////// Gap | 2 px +-----------------|-----------------+ | | F750 | 384 px | | | +-----------------|-----------------+ | /////////////// | /////////// Gap | 84 px +-----------------|-----------------+ +Yhric | | +Zhric F880 | 384 px (cross- <-----------------------o out of the page | track) +-----------------------------------+ | ///////////////////////////// Gap | 84 px +-----------------------------------+ | FPAN | 640 px | | | | +-----------------------------------+ | ///////////////////////////// Gap | 84 px +-----------------------------------+ | F550 | 384 px | | !-----------------------------------+ 2048 | ///////////////////////////// Gap | 2 px lines +-----------------------------------+ 2048 pixels/line STereo Camera (STC): ~~~~~~~~~~~~~~~~~~~~ The STC detector consists of 2 panchromatic and 4 broadband filters. The forward looking and backward looking channels of STC both image onto the same detector, so 1 panchromatic and 2 broadband filters correspond to each STC channel. The two Channels are called Channel High (STC-H) and Channel Low (STC-L) (depending on their position respect to the optical bench of SIMBIO-SYS). The following tables contain detector and field of view characteristics for the forward and backward looking channels. Since portions of the incoming beam are blocked and gaps are present between each filtered useful images on the detector, the entire FOV is not actually recorded. For each sub-channel is possible to acquire simultaneously three quasi-contiguous areas of Mercury surface in different colors and without using movable elements; however, while the nominal FOV of each sub-channel is 5.39 x 4.75 degrees, including gaps, the scientific useful FOV is actually smaller, i.e. 5.3 x 3.07 degrees, and it is divided in three portions (5.39 x 2.31, 5.39 x 0.38, 5.39 x 0.38 degrees). At periherm, each panchromatic strip corresponds to an area of about 40 x 19 km2 on the Mercury surface and each colored strip to an area of about 40 x 3 km2. Channel Low (STC-L): ------------------- ------ ------ ------ ------ ------ Parameter* F920 Gap F550 Gap P700 ------------------- ------ ------ ------ ------ ------ Vert. Pixels 64 146 64 136 384 Vert. FOV 0.38 0.87 0.38 0.81 2.31 Vert. FOV Start -2.24 -0.59 -0.97 2.53 0.22 Vert. FOV Stop - 1.86 -2.24 -0.59 -0.97 2.53 Vert. FOV Center -2.05 -1.42 -0.78 0.78 1.38 Vert. First Pixel 1953 1808 1745 1610 1227 Vert. Last Pixel 2016 1953 1808 1745 1610 Horiz. Pixels 896 896 896 896 896 Horiz. FOV 5.39 5.39 5.39 5.39 5.39 Horiz. FOV Start -2.69 -2.69 -2.69 -2.69 -2.69 Horiz. FOV Stop 2.69 2.69 2.69 2.69 2.69 Horiz. FOV Center 0 0 0 0 0 Horiz. First Pixel 576 576 576 576 576 Horiz. Last Pixel 1471 1471 1471 1471 1471 ------------------- ------ ------ ------ ------ ------ * all FOV values above are in degrees * Vert. or Vertical implies along-track * Horiz. or Horizontal implies across-track ^ +Xstc-l/Xsc (along track) | | +--------------- |-----------------+ | | F920 | 64 px +-----------------|-----------------+ | /////////////// | /////////////// | | /////////////// | /////////// Gap | 146 px +-----------------|-----------------+ +Ystc-l/Ysc <-------------------o +Zstc-l F550 | 64 px (cross-track) +-----------------------------------+ | ///////////////////////////// Gap | | ///////////////////////////////// | 136 px +-----------------------------------+ | P700 | 384 px | | | | | | | | (1227,0)-----------------------------------+ Pixel 2048 pixels/line --------> Sample direction Channel High (STC-H): ------------------- ------ ------ ------ ------ ------ Parameter* F750 Gap F420 Gap P700 ------------------- ------ ------ ------ ------ ------ Vert. Pixels 64 146 64 135 384 Vert. FOV 0.38 0.87 0.38 0.81 2.31 Vert. FOV Start 2.24 1.86 0.97 0.59 -0.22 Vert. FOV Stop 1.86 0.97 0.59 -0.22 -2.53 Vert. FOV Center 2.05 1.42 0.78 0.18 -1.38 Vert. First Pixel 32 95 240 303 437 Vert. Last Pixel 95 240 303 437 820 Horiz. Pixels 896 896 896 896 896 Horiz. FOV 5.39 5.39 5.39 5.39 5.39 Horiz. FOV Start -2.69 -2.69 -2.69 -2.69 -2.69 Horiz. FOV Stop 2.69 2.69 2.69 2.69 2.69 Horiz. FOV Center 0 0 0 0 0 Horiz. First Pixel 576 576 576 576 576 Horiz. Last Pixel 1471 1471 1471 1471 1471 ------------------- ------ ------ ------ ------ ------ * all FOV values above are in degrees * Vert. or Vertical implies along-track * Horiz. or Horizontal implies across-track ^ +Xstc-h/Xsc (along track) | Pixel | (32,0)--------------|-----------------+ | | F750 | 64 px +-----------------|-----------------+ | /////////////// | /////////////// | | /////////////// | /////////// Gap | 146 px +-----------------|-----------------+ +Ystc-h/Ysc <-------------------o +Zstc-h F420 | 64 px (cross-track) +-----------------------------------+ | ///////////////////////////// Gap | | ///////////////////////////////// | 135 px +-----------------------------------+ | P700 | 384 px | | | | | | | | +-----------------------------------+ 2048 pixels/line Visible & Infrared Hyperspectral Imager (VIHI): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VIHI is a moderate resolution Hyperspectral push broom imaging spectrometer working in the visual and near infrared spectral region composed of a Schmidt modified telescope conjugated to a Littrow grating spectrometer. The operating principle is as follows: the image is projected on the focal plane of the Schmidt telescope; a pixel wide slit is located in the focal plane and represent the entrance to the Littrow spectrometer; the slit image is diffracted by the spectrometer grating onto the bi-dimensional sensor where 256 monochromatic (with delta lambda of 6.25nm) images of the slit are distributed. The 2D sensor, for each acquisition, will contain along the columns the spectral information and along the rows the spatial information. Thus the sampling the surface of Mercury is performed with a FOV of 64 x 0.25 mrad and the instrument operates in pushbroom configuration. The instrument has an Instantaneous field of view (IFOV) of 250 microrad corresponding to a spatial scale of 100 m/pixel at 400 km altitude and 375 m at 1500 km altitude. The VIHI detector consists of 1 2D sensor with the following parameters: ------------------- ------ Parameter* VIHI ------------------- ------ Horiz. Pixels 256 Horiz. FOV 3.667 Horiz. FOV Start 1.833 Horiz. FOV Stop -1.833 Horiz. FOV Center 0.0 Horiz. First Pixel 1 Horiz. Last Pixel 256 ------------------- ------ * all FOV values above are in degrees * Horiz. or Horizontal implies across-track ^ +Xvihi (S/C velocity/along track) | Pixel | (1,1)------|---------+ +Yvihi <----------------o | 1 px (cross- +-------------------+ track) 256 pixels/line FOV Definitions ----------------------------------------------------------------------------- This section contains definitions for the fields of view (FOV) for the SIMBIO-SYS channels. These definitions are provided in a format required by the SPICE (CSPICE) function GETFOV (getfov_c). High Resolution Imaging Camera (HRIC) FOVs: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The SIMBIO-SYS HRIC combined field of view is a square boresight on the +Z-axis of the MPO_SIMBIO-SYS_HRIC_FPA frame. The angular dimension of the field of view is 1.47 x 1.47 (degrees). Please note that the FOV reference and cross angles are defined with half angle values. The following FOV definition corresponds to the NAIF Body Name: MPO_SIMBIO-SYS_HRIC_FPA. \begindata INS-121610_NAME = 'MPO_SIMBIO-SYS_HRIC_FPA' INS-121610_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121610_FOV_FRAME = 'MPO_SIMBIO-SYS_HRIC_FPA' INS-121610_FOV_SHAPE = 'RECTANGLE' INS-121610_FOV_CLASS_SPEC = 'ANGLES' INS-121610_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121610_FOV_REF_ANGLE = ( 0.735 ) INS-121610_FOV_CROSS_ANGLE = ( 0.735 ) INS-121610_FOV_ANGLE_UNITS = 'DEGREES' \begintext This combined HRIC field of view is split between 4 sub-fields of view corresponding to each of the 4 HRIC filters (1 Panchromatic and 3 Broad- band). The cross-track geometry of each of these filters is the same as that of the combined field of view illustrated above. Please note that the FOV reference and cross angles are defined with half angle values. The following FOV definitions correspond to the following NAIF Body Names: MPO_SIMBIO-SYS_HRIC_F550, MPO_SIMBIO-SYS_HRIC_FPAN, MPO_SIMBIO-SYS_HRIC_F750 and MPO_SIMBIO-SYS_HRIC_F880. \begindata INS-121611_NAME = 'MPO_SIMBIO-SYS_HRIC_F550' INS-121611_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121611_FOV_FRAME = 'MPO_SIMBIO-SYS_HRIC_F550' INS-121611_FOV_SHAPE = 'RECTANGLE' INS-121611_FOV_CLASS_SPEC = 'ANGLES' INS-121611_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121611_FOV_REF_ANGLE = ( 0.138 ) INS-121611_FOV_CROSS_ANGLE = ( 0.735 ) INS-121611_FOV_ANGLE_UNITS = 'DEGREES' INS-121612_NAME = 'MPO_SIMBIO-SYS_HRIC_FPAN' INS-121612_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121612_FOV_FRAME = 'MPO_SIMBIO-SYS_HRIC_FPAN' INS-121612_FOV_SHAPE = 'RECTANGLE' INS-121612_FOV_CLASS_SPEC = 'ANGLES' INS-121612_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121612_FOV_REF_ANGLE = ( 0.2295 ) INS-121612_FOV_CROSS_ANGLE = ( 0.735 ) INS-121612_FOV_ANGLE_UNITS = 'DEGREES' INS-121613_NAME = 'MPO_SIMBIO-SYS_HRIC_F750' INS-121613_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121613_FOV_FRAME = 'MPO_SIMBIO-SYS_HRIC_F750' INS-121613_FOV_SHAPE = 'RECTANGLE' INS-121613_FOV_CLASS_SPEC = 'ANGLES' INS-121613_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121613_FOV_REF_ANGLE = ( 0.138 ) INS-121613_FOV_CROSS_ANGLE = ( 0.735 ) INS-121613_FOV_ANGLE_UNITS = 'DEGREES' INS-121614_NAME = 'MPO_SIMBIO-SYS_HRIC_F880' INS-121614_BORESIGHT = ( 0.0, 0.0, 1.0) INS-121614_FOV_FRAME = 'MPO_SIMBIO-SYS_HRIC_F880' INS-121614_FOV_SHAPE = 'RECTANGLE' INS-121614_FOV_CLASS_SPEC = 'ANGLES' INS-121614_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121614_FOV_REF_ANGLE = ( 0.138 ) INS-121614_FOV_CROSS_ANGLE = ( 0.735 ) INS-121614_FOV_ANGLE_UNITS = 'DEGREES' \begintext STereo Camera (STC) FOV: ~~~~~~~~~~~~~~~~~~~~~~~~ The SIMBIO-SYS STC fields of view are rectangular boresights pointing 20 degrees forward and backward of the nadir +Z axis of MPO's MPO_SIMBIO-SYS_STC frame. The combined angular dimension of each back and forward field of view is 5.39 x 4.75 degrees. Please note that the FOV reference and cross angles are defined with half angle values. The following FOV definition corresponds to the NAIF Body Name: MPO_SIMBIO-SYS_STC-L and MPO_SIMBIO-SYS_STC-H. \begindata INS-121621_NAME = 'MPO_SIMBIO-SYS_STC-L' INS-121621_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121621_FOV_FRAME = 'MPO_SIMBIO-SYS_STC-L' INS-121621_FOV_SHAPE = 'RECTANGLE' INS-121621_FOV_CLASS_SPEC = 'ANGLES' INS-121621_FOV_REF_VECTOR = ( 0.0, 1.0, 0.0 ) INS-121621_FOV_REF_ANGLE = ( 2.375 ) INS-121621_FOV_CROSS_ANGLE = ( 2.695 ) INS-121621_FOV_ANGLE_UNITS = 'DEGREES' INS-121622_NAME = 'MPO_SIMBIO-SYS_STC-H' INS-121622_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121622_FOV_FRAME = 'MPO_SIMBIO-SYS_STC-H' INS-121622_FOV_SHAPE = 'RECTANGLE' INS-121622_FOV_CLASS_SPEC = 'ANGLES' INS-121622_FOV_REF_VECTOR = ( 0.0, 1.0, 0.0 ) INS-121622_FOV_REF_ANGLE = ( 2.375 ) INS-121622_FOV_CROSS_ANGLE = ( 2.695 ) INS-121622_FOV_ANGLE_UNITS = 'DEGREES' \begintext This combined STC field of views are split between 3 sub-fields of view corresponding to each of the 3 STC filters (1 Panchromatic and 2 Broad- band). The cross-track geometry of each of these filters is the same as that of the combined field of view illustrated above. Please note that the FOV reference and cross angles are defined with half angle values. The following FOV definition corresponds to the SYS-L sub-channel and have the following NAIF Body Names: MPO_SIMBIO-SYS_STC-L_F920, MPO_SIMBIO-SYS_STC-L_F550 and MPO_SIMBIO-SYS_STC-L_P700. \begindata INS-121623_NAME = 'MPO_SIMBIO-SYS_STC-L_F920' INS-121623_BORESIGHT = ( 0.0, 0.0, 1.0) INS-121623_FOV_FRAME = 'MPO_SIMBIO-SYS_STC-L_F920' INS-121623_FOV_SHAPE = 'RECTANGLE' INS-121623_FOV_CLASS_SPEC = 'ANGLES' INS-121623_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121623_FOV_REF_ANGLE = ( 0.189 ) INS-121623_FOV_CROSS_ANGLE = ( 2.695 ) INS-121623_FOV_ANGLE_UNITS = 'DEGREES' INS-121624_NAME = 'MPO_SIMBIO-SYS_STC-L_F550' INS-121624_BORESIGHT = ( 0.0, 0.0, 1.0) INS-121624_FOV_FRAME = 'MPO_SIMBIO-SYS_STC-L_F550' INS-121624_FOV_SHAPE = 'RECTANGLE' INS-121624_FOV_CLASS_SPEC = 'ANGLES' INS-121624_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121624_FOV_REF_ANGLE = ( 0.189 ) INS-121624_FOV_CROSS_ANGLE = ( 2.695 ) INS-121624_FOV_ANGLE_UNITS = 'DEGREES' INS-121625_NAME = 'MPO_SIMBIO-SYS_STC-L_P700' INS-121625_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121625_FOV_FRAME = 'MPO_SIMBIO-SYS_STC-L_P700' INS-121625_FOV_SHAPE = 'RECTANGLE' INS-121625_FOV_CLASS_SPEC = 'ANGLES' INS-121625_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121625_FOV_REF_ANGLE = ( 1.154 ) INS-121625_FOV_CROSS_ANGLE = ( 2.695 ) INS-121625_FOV_ANGLE_UNITS = 'DEGREES' \begintext Please note that the FOV reference and cross angles are defined with half angle values. The following FOV definition corresponds to the SYS-H sub-channel and have the following NAIF Body Names: MPO_SIMBIO-SYS_STC-H_P700, MPO_SIMBIO-SYS_STC-H_F420 and MPO_SIMBIO-SYS_STC-H_F750. \begindata INS-121626_NAME = 'MPO_SIMBIO-SYS_STC-H_P700' INS-121626_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121626_FOV_FRAME = 'MPO_SIMBIO-SYS_STC-H_P700' INS-121626_FOV_SHAPE = 'RECTANGLE' INS-121626_FOV_CLASS_SPEC = 'ANGLES' INS-121626_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121626_FOV_REF_ANGLE = ( 1.154 ) INS-121626_FOV_CROSS_ANGLE = ( 2.695 ) INS-121626_FOV_ANGLE_UNITS = 'DEGREES' INS-121627_NAME = 'MPO_SIMBIO-SYS_STC-H_F420' INS-121627_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121627_FOV_FRAME = 'MPO_SIMBIO-SYS_STC-H_F420' INS-121627_FOV_SHAPE = 'RECTANGLE' INS-121627_FOV_CLASS_SPEC = 'ANGLES' INS-121627_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121627_FOV_REF_ANGLE = ( 0.189 ) INS-121627_FOV_CROSS_ANGLE = ( 2.695 ) INS-121627_FOV_ANGLE_UNITS = 'DEGREES' INS-121628_NAME = 'MPO_SIMBIO-SYS_STC-H_F750' INS-121628_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121628_FOV_FRAME = 'MPO_SIMBIO-SYS_STC-H_F750' INS-121628_FOV_SHAPE = 'RECTANGLE' INS-121628_FOV_CLASS_SPEC = 'ANGLES' INS-121628_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121628_FOV_REF_ANGLE = ( 0.189 ) INS-121628_FOV_CROSS_ANGLE = ( 2.695 ) INS-121628_FOV_ANGLE_UNITS = 'DEGREES' \begintext Visible & Infrared Hyperspectral Imager (VIHI) FOV: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The SIMBIO-SYS VIHI field of view is rectangular with the boresight on the +Z-axis of the MPO_SIMBIO-SYS_VIHI frame. The angular dimension of the field of view is 3.66 x 0.014 (degrees). Please note that the FOV reference and cross angles are defined with half angle values. The following FOV definition corresponds to the following NAIF Body Name: MPO_SIMBIO-SYS_VIHI. \begindata INS-121630_NAME = 'MPO_SIMBIO-SYS_VIHI' INS-121630_BORESIGHT = ( 0.0, 0.0, 1.0 ) INS-121630_FOV_FRAME = 'MPO_SIMBIO-SYS_VIHI_FPA' INS-121630_FOV_SHAPE = 'RECTANGLE' INS-121630_FOV_CLASS_SPEC = 'ANGLES' INS-121630_FOV_REF_VECTOR = ( 1.0, 0.0, 0.0 ) INS-121630_FOV_REF_ANGLE = ( 0.0072 ) INS-121630_FOV_CROSS_ANGLE = ( 1.83 ) INS-121630_FOV_ANGLE_UNITS = 'DEGREES' \begintext Wavelengths Ranges ----------------------------------------------------------------------------- High Resolution Imaging Camera (HRIC): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The HRIC detector consists of 1 panchromatic and 3 broadband filters. They cover the detector in the order shown in the table below with inter-filter gaps and the central wavelengths and bandwidths given. The NAIF ID for each HRIC filter is also shown. -------- -------- -------- -------- Filter Center Width ID -------- -------- -------- -------- F550 550 nm 40 nm -121611 FPAN 650 nm 500 nm -121612 F750 750 nm 40 nm -121613 F880 880 nm 40 nm -121614 -------- -------- -------- -------- \begindata INS-121611_FILTER_BANDCENTER = ( 550 ) INS-121611_FILTER_BANDWIDTH = ( 40 ) INS-121612_FILTER_BANDCENTER = ( 650 ) INS-121612_FILTER_BANDWIDTH = ( 500 ) INS-121613_FILTER_BANDCENTER = ( 750 ) INS-121613_FILTER_BANDWIDTH = ( 40 ) INS-121614_FILTER_BANDCENTER = ( 880 ) INS-121614_FILTER_BANDWIDTH = ( 40 ) \begintext STereo Camera (STC): ~~~~~~~~~~~~~~~~~~~~ The STC detector consists of 2 panchromatic and 4 broadband filters. They cover the detector in the order shown in the table below with inter-filter gaps and the central wavelengths and bandwidths given. The NAIF ID for each STC filter is also shown. -------- -------- -------- -------- Filter Center Width ID -------- -------- -------- -------- F550 550 nm 20 nm -121623 F420 420 nm 20 nm -121624 P700 700 nm 200 nm -121625 P700 700 nm 200 nm -121626 F920 920 nm 20 nm -121627 F750 750 nm 20 nm -121628 -------- -------- -------- -------- \begindata INS-121623_FILTER_BANDCENTER = ( 550 ) INS-121623_FILTER_BANDWIDTH = ( 20 ) INS-121624_FILTER_BANDCENTER = ( 420 ) INS-121624_FILTER_BANDWIDTH = ( 20 ) INS-121625_FILTER_BANDCENTER = ( 700 ) INS-121625_FILTER_BANDWIDTH = ( 200 ) INS-121626_FILTER_BANDCENTER = ( 700 ) INS-121626_FILTER_BANDWIDTH = ( 200 ) INS-121627_FILTER_BANDCENTER = ( 920 ) INS-121627_FILTER_BANDWIDTH = ( 20 ) INS-121628_FILTER_BANDCENTER = ( 750 ) INS-121628_FILTER_BANDWIDTH = ( 20 ) \begintext Visible & Infrared Hyperspectral Imager (VIHI): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The spectral range the VIHI is 400 to 2000 nm. It has 256 spectral channels and a spectral dispersion of 6.25 nm/pixel. Optical Parameters ----------------------------------------------------------------------------- The first order optical parameters for the 3 channels that constitute the SIMBIO-SYS imaging suite (from [6]: HRIC = APPENDIX A.2, STC = APPENDIX A.3, VIHI = APPENDIX A.4): ---------------------------- ---------- --------- ---------- Parameter HRIC STC VIHI ---------------------------- ---------- --------- ---------- Aperture, mm 90.0 15.0 25.0 Effective Focal Length, mm 800.0 95.0 160.0 F/number 8.9 6.3 6.4 IFOV, microrad/pixel 12.5 105.0E3 250.0 Field of View, deg cross-track 1.47 5.39 3.7 along-track 1.47* 4.75* 0.014 ---------------------------- ---------- --------- ---------- *instrument combined field of view These values are given in the keywords below in the same units as the tables above: High Resolution Imaging Camera (HRIC): \begindata INS-121610_APERTURE = ( 90.0 ) INS-121610_FOCAL_LENGTH = ( 800.0 ) INS-121610_FOV_ANGULAR_SIZE = ( 1.47, 1.47 ) INS-121610_WAVELENGTH_RANGE = ( 400, 900 ) INS-121610_F/NUMBER = ( 8.9 ) INS-121610_IFOV = ( 12.5 ) \begintext STereo Camera (STC): \begindata INS-121620_APERTURE = ( 15.0 ) INS-121620_FOCAL_LENGTH = ( 95.0 ) INS-121620_FOV_ANGULAR_SIZE = ( 5.39, 4.48 ) INS-121620_WAVELENGTH_RANGE = ( 410, 930 ) INS-121620_F/NUMBER = ( 6.3 ) INS-121620_IFOV = ( 105.0E3 ) \begintext Visible & Infrared Hyperspectral Imager (VIHI): \begindata INS-121630_APERTURE = ( 25.0 ) INS-121630_FOCAL_LENGTH = ( 160.0 ) INS-121630_FOV_ANGULAR_SIZE = ( 3.7, 0.014 ) INS-121630_WAVELENGTH_RANGE = ( 400, 2000 ) INS-121630_F/NUMBER = ( 6.4 ) INS-121630_IFOV = ( 250.0 ) \begintext Detector CCD Parameters ----------------------------------------------------------------------------- The CCD geometry parameters as presented in [6] are provided below: ------------------------------- ----------- ----------- --------- Parameter HRIC STC VIHI ------------------------------- ----------- ----------- --------- Detector Array Size 2048x2048 2048x2048 264x264 Detector Size, mm Pixel Size, mm (est) 10.0E-3 10.0E-3 Pixel Pitch, mm 40.0E-3 Spectral Channels 256 Spectral Dispersion, nm/pixel 6.25 ------------------------------- ----------- ----------- --------- which translates to the following keyword and value pairs: High Resolution Imaging Camera (HRIC): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \begindata INS-121610_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121610_PIXEL_SAMPLES = ( 2048 ) INS-121610_PIXEL_LINES = ( 2048 ) INS-121610_CCD_CENTER = ( 1024.5, 1024.5 ) INS-121611_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121611_PIXEL_SAMPLES = ( 2048 ) INS-121611_PIXEL_LINES = ( 384 ) INS-121611_CCD_CENTER = ( 1024.5, 192.5 ) INS-121612_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121612_PIXEL_SAMPLES = ( 2048 ) INS-121612_PIXEL_LINES = ( 640 ) INS-121612_CCD_CENTER = ( 1024.5, 320.5 ) INS-121613_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121613_PIXEL_SAMPLES = ( 2048 ) INS-121613_PIXEL_LINES = ( 384 ) INS-121613_CCD_CENTER = ( 1024.5, 192.5 ) INS-121614_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121614_PIXEL_SAMPLES = ( 2048 ) INS-121614_PIXEL_LINES = ( 384 ) INS-121614_CCD_CENTER = ( 1024.5, 192.5 ) \begintext STereo Camera (STC): ~~~~~~~~~~~~~~~~~~~~ \begindata INS-121620_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121620_PIXEL_SAMPLES = ( 2048 ) INS-121620_PIXEL_LINES = ( 2048 ) INS-121620_CCD_CENTER = ( 1024.5, 1024.5 ) INS-121621_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121621_PIXEL_SAMPLES = ( 896 ) INS-121621_PIXEL_LINES = ( 1024 ) INS-121621_CCD_CENTER = ( 448.5, 1646.922274 ) INS-121622_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121622_PIXEL_SAMPLES = ( 896 ) INS-121622_PIXEL_LINES = ( 1024 ) INS-121622_CCD_CENTER = ( 448.5, 399.2480315 ) INS-121623_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121623_PIXEL_SAMPLES = ( 896 ) INS-121623_PIXEL_LINES = ( 64 ) INS-121623_CCD_CENTER = ( 448.5, 32.5 ) INS-121624_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121624_PIXEL_SAMPLES = ( 896 ) INS-121624_PIXEL_LINES = ( 64 ) INS-121624_CCD_CENTER = ( 448.5, 32.5 ) INS-121625_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121625_PIXEL_SAMPLES = ( 896 ) INS-121625_PIXEL_LINES = ( 384 ) INS-121625_CCD_CENTER = ( 448.5, 192.5 ) INS-121626_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121626_PIXEL_SAMPLES = ( 896 ) INS-121626_PIXEL_LINES = ( 384 ) INS-121626_CCD_CENTER = ( 448.5, 192.5 ) INS-121627_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121627_PIXEL_SAMPLES = ( 896 ) INS-121627_PIXEL_LINES = ( 64 ) INS-121627_CCD_CENTER = ( 448.5, 32.5 ) INS-121628_PIXEL_SIZE = ( 10.0E-3, 10.0E-3 ) INS-121628_PIXEL_SAMPLES = ( 896 ) INS-121628_PIXEL_LINES = ( 64 ) INS-121628_CCD_CENTER = ( 448.5, 32.5 ) \begintext Visible & Infrared Hyperspectral Imager (VIHI): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \begindata INS-121630_PIXEL_SAMPLES = ( 256 ) INS-121630_PIXEL_LINES = ( 1 ) INS-121630_CCD_CENTER = ( 128, 0.5 ) INS-121630_SPECTRAL_CHANNELS = ( 256 ) INS-121630_SPECTRAL_DISPERSION = ( 6.25 ) \begintext Optical Distortion ----------------------------------------------------------------------------- STC Optical Distortion: ~~~~~~~~~~~~~~~~~~~~~~~ Given the distorted image coordinates (i, j) (horizontal and vertical respectively) the Distortion Matrices (3x6) and provided the implementation of the Rational Function Model, return the ideal image coordinates (x, y) (horizontal and vertical respectively). Correcting distorted coordinates: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Converting from distorted (i,j) to ideal (x,y). Rational Function Model (RFM) described by Emanuele Simioni in [10]; The RFM extends the classical pinhole model considering a second order of correction. The RFM is applied for each broad band filter (6 on the STC unique focal plane). The geometric calibration campaign has been performed in two different conditions: - HOT (FPA at 273 deg C and STC OB at 295 deg C) - COLD (FPA at 263 deg C and STC OB at 275 deg C) The RFM has been estimated for both the HOT and COLD cases. Model is described by following equations: chi = [ i*i i*j, j*j, i, j, 1] INS-XXXXXX_DIST_COLD_MATRIX (1,:) * chi' x = ----------------------------------------------- INS-XXXXXX_DIST_COLD_MATRIX (3,:) * chi' INS-XXXXXX_DIST_COLD_MATRIX (2,:) * chi' y = ------------------------------------------------ INS-XXXXXX_DIST_COLD_MATRIX (3,:) * chi' where (i, j) are distorted focal plane coordinates in millimeters, (x, y) are ideal focal plane coordinates in millimeters and the Distortion Matrices allow the conversion. \begindata INS-121628_DIST_COLD_MATRIX = ( -0.00511, 0.000189, -2.18E-06, 0.99869, -0.00021, 0.00664, -9.573E-05, -0.00509, 0.000182, 0.000582, 1.0011, 0.001719, -1.31E-07, 2.22E-9, 5.62E-9, -0.00509, 0.0000182, 0.999987 ) INS-121627_DIST_COLD_MATRIX = ( 0.003107, -0.00111, 1.25E-06, 1.00033, -0.00047, 0.005569, -4.95E-06, 0.003155, -0.00112, 0.000209, 1.00077, -0.01699, -2.80E-08, 1.84E-9, 4.41E-10, 0.003157, -0.00111, 0.999994 ) INS-121626_DIST_COLD_MATRIX = ( -0.00212, -0.00067, -1.33E-06, 1.00129, 0.000671, 0.010777, -7.81E-07, -0.00211, -0.00067, 0.000978, 0.999349, -0.02716, -2.37E-09, -2.47E-9, 9.78E-10, -0.00211, -0.00067, 0.999998 ) INS-121625_DIST_COLD_MATRIX = ( -0.00032, -0.00019, 8.41E-07, 1.00145, -0.00085, -0.00156, -2.90E-06, -0.00032, -0.00019, -0.00051, 0.998979, -0.00603, 7.91E-09, -4.46E-10, 2.92E-9, -0.00032, -0.00019, 1 ) INS-121624_DIST_COLD_MATRIX = ( 0.000541, -0.00015, -1.14E-06, 1.00145, 1.00099, -0.00072, -4.12E-05, 0.000546, -0.00015, 0.000298, 0.999282, -0.00266, -1.03E-07, 4.61E-9, 4.26E-9, 0.000545, -0.00015, 1 ) INS-121623_DIST_COLD_MATRIX = ( 0.004369, 0.000791, -1.44E-06, 0.998904, 0.000705, 0.003525, -2.35E-05, 0.004352, 0.000784, 0.000912, 1.00113, 0.01923, 1.11E-07, -5.31E-9, 4.87E-9, 0.004342, -0.000784, 0.99999 ) INS-121628_DIST_HOT_MATRIX = ( -0.00398, -0.00034, 2.05E-06,0.99868, -0.00054, 0.006086, -1.89E-05, -0.00399, -0.00035, 0.001266, 1.0005, -0.00759, -3.02E-08, 6.64E-9, 1.22E-9, -0.00399, -0.00035, 0.999992 ) INS-121627_DIST_HOT_MATRIX = ( -0.00278, -0.00141, 9.75E-07, 0.99943, -0.00043, 0.006714, -6.33E-06, -0.00277, -0.00142, 0.000733, 1.00038, -0.0102, 4.69E-08, -4.60E-9, -1.88E-9, -0.00276, -0.00142, 0.999995 ) INS-121626_DIST_HOT_MATRIX = ( -0.00141, -0.00041, -1.03E-06, 1.00119, 0.000495, 0.005865, -2.27E-06, -0.0014, -0.00042, 0.001105, 0.99932, -0.02726, 4.18E-09, 6.32E-10, 1.79E-9, -0.0014, -0.00042, 0.999999 ) INS-121625_DIST_HOT_MATRIX = ( -0.00101, -0.00012, 8.14E-07, 1.00139, -0.00097, -0.0025, -4.18E-06, -0.001, -0.00013, -0.00032, 0.998814, -0.00433, 1.02E-08, -2.28E-9, 1.91E-9, -0.001, -0.00013, 0.999999 ) INS-121624_DIST_HOT_MATRIX = ( -0.00268, 9.23E-5, -1.40E-06, 1.00168, -0.0003, -0.00176, 0.000108, -0.00264, 8.55E-5, -0.00316, 0.998923, -0.002472, -2.15E-07, -2.43E-8, 2.10E-9, -0.00264, 8.69E-5, 0.999997 ) INS-121623_DIST_HOT_MATRIX = ( -0.00098, 0.000192, -2.38E-06, 1.00106, -0.00016, 0.000145, 5.82E-05, -0.00089, 0.000185, -0.00107, 1.00114, 0.001486, -1.77E-07, -6.58E-9, 3.37E-9, 0.0009, 0.000186, 1 ) \begintext From this equation it follows that for every distorted coordinates (i, j), there is a unique pair of undistorted coordinates (x, y). However, the contrary is not true. To find distorted coordinates from ideal coordinates we need to solve a system of equations that potentially has several solutions. VIHI Optical Distortion: ~~~~~~~~~~~~~~~~~~~~~~~~ As described in chapter X of [11] the determination of the VIHI Field Of View (FOV) is performed by means of a spatial scan. The signal collected by pixels placed at samples = 2, 129, 255 and at band = 128, with the scope to determine the angular distance among them, has been analyzed. The measurement of the angle between samples 2 and 255 gives a measurement of the full FOV extension while between samples 2-129 and 129-255 allows characterizing the angular distance of the two FOV extremes from the boresight. The following Table shows the FOV and average IFOV values measured between samples (2 : 255) and between boresight (s=128) and FOV extreme positions (s= 2, 255). --------------------------------------------------------- Range FOV (rad) Avg. IFOV (mircorad) --------------------------------------------------------- 2:255 0.0624338 246.8 2:129 0.0313123 246.5 129:255 0.0311289 247.1 --------------------------------------------------------- The performances of the optical system of VIHI is remarkably stable in terms of pixel IFOV resulting in a dispersion of less than 5%, we can thus use the IFOV mean value, of 246.8 microrad to determine the FOV of the instrument with respect to the boresight assumed for the time being at pixel 128; the FOV is thus: +/- 246.8 microrad x 127 = +/- 0.03134 rad = +/- 1.7958 deg An accurate measure of the offset of the boresight with respect to the +Z axis of the S/C, as well as a measure of the rotation of the slit, can be performed only during the Mercury Commissioning Phase. HRIC Optical distortion: ~~~~~~~~~~~~~~~~~~~~~~~~ Radial distortion, whilst primarily dominated by low order radial components, can be corrected using Brown's distortion model, also known as the Brown-Conrady model based on earlier work by Conrady [12]. The Brown-Conrady model corrects both for radial distortion and for tangential distortion caused by physical elements in a lens not being perfectly aligned. The latter is also known as decentering distortion. The model applied follows the following equations: xd - xc xu = xc + --------------------------------- 1 + k1 * r^2 + k2 * r^4 + ... yd - yc yu = yc + --------------------------------- 1 + k1 * r^2 + k2 * r^4 + ... __________________________ / r = _ / (xd -xc)^2 + (yd - yc)^2 \/ where: ... an infinite series (xd , yd) distorted image point as projected on image plane using specific lens, (xu , yu) undistorted image point ad projected by an ideal pinhole camera, (xc , yc) distortion center, kn n_th radial distortion coefficient. The values evaluated for HRIC are: xc = 150.86595271826414 yc = 152.1012801766268 k1 = 0.997418352324332 k2 = 6.238174676084027E-06 k3 = -7.324172863561304E-09 k4 = 2.921061949875991E-12 k5 = -3.4497672879224536E-16 End of IK file.