Brief Guide to Doing SPICE Hands-On Lessons Using WGC |
Table of ContentsBrief Guide to Doing SPICE Hands-On Lessons Using WGC Overview WGC and WGC Tutorial URLs ``CASSINI Remote Sensing'' Hands-On Lesson Using WGC Kernels Used Time Conversion (convtm) Time Conversion -- Selected Extra Credit Obtaining Target States and Positions (getsta) Obtaining Target States and Positions -- Selected Extra Credit Spacecraft Orientation and Reference Frames (xform) Spacecraft Orientation and Reference Frames -- Selected Extra Credit Computing Sub-s/c and Sub-solar Points on an Ellipsoid and a DSK (subpts) Computing Sub-spacecraft and Sub-solar Points -- Selected Extra Credit Intersecting Vectors with an Ellipsoid and a DSK (fovint) ``ExoMars 2016 Remote Sensing'' Hands-On Lesson Using WGC Kernels Used Time Conversion (convtm) Time Conversion -- Selected Extra Credit Obtaining Target States and Positions (getsta) Obtaining Target States and Positions -- Selected Extra Credit Spacecraft Orientation and Reference Frames (xform) Spacecraft Orientation and Reference Frames -- Selected Extra Credit Computing Sub-s/c and Sub-solar Points on an Ellipsoid and a DSK (subpts) Computing Sub-spacecraft and Sub-solar Points -- Selected Extra Credit Intersecting Vectors with an Ellipsoid and a DSK (fovint) ``KPLO Remote Sensing'' Hands-On Lesson Using WGC Kernels Used Time Conversion (convtm) Time Conversion -- Selected Extra Credit Obtaining Target States and Positions (getsta) Obtaining Target States and Positions -- Selected Extra Credit Spacecraft Orientation and Reference Frames (xform) Spacecraft Orientation and Reference Frames -- Selected Extra Credit Computing Sub-s/c and Sub-solar Points on an Ellipsoid and a DSK (subpts) Computing Sub-spacecraft and Sub-solar Points -- Selected Extra Credit Intersecting Vectors with an Ellipsoid and a DSK (fovint) ``BepiColombo MPO Remote Sensing'' Hands-On Lesson Using WGC Kernels Used Time Conversion (convtm) Time Conversion -- Selected Extra Credit Obtaining Target States and Positions (getsta) Obtaining Target States and Positions -- Selected Extra Credit Spacecraft Orientation and Reference Frames (xform) Spacecraft Orientation and Reference Frames -- Selected Extra Credit Computing Sub-s/c and Sub-solar Points on an Ellipsoid and a DSK (subpts) Computing Sub-spacecraft and Sub-solar Points -- Selected Extra Credit Intersecting Vectors with an Ellipsoid and a DSK (fovint) ``CASSINI In-situ Sensing'' Hands-On Lesson Using WGC Kernels Used Step-1: ``UTC to ET'' Step-2: ``SCLK to ET'' Step-3: ``Spacecraft State'' Step-4: ``Sun Direction'' Step-5: ``Sub-Spacecraft Point'' Step-6: ``Spacecraft Velocity'' ``BepiColombo MPO In-situ Sensing'' Hands-On Lesson Using WGC Kernels Used Step-1: ``UTC to ET'' Step-2: ``SCLK to ET'' Step-3: ``Spacecraft State'' Step-4: ``Sun Direction'' Step-5: ``Sub-Spacecraft Point'' Step-6: ``Spacecraft Velocity'' ``Mars Express Geometric Event Finding'' Hands-On Lesson Using WGC Kernels Used Find View Periods Find Times when Target is Visible Extra Credit ``ExoMars-16 TGO Geometric Event Finding'' Hands-On Lesson Using WGC Kernels Used Find View Periods Find Times when Target is Visible Extra Credit ``KPLO Geometric Event Finding'' Hands-On Lesson Using WGC Kernels Used Find View Periods Find Times when Target is Visible Extra Credit ``BepiColombo MPO Geometric Event Finding'' Hands-On Lesson Using WGC Kernels Used Find View Periods Find Times when Target is Visible Extra Credit ``Binary PCK'' Hands-On Lesson Using WGC Moon rotation (mrotat) Earth rotation (erotat) Brief Guide to Doing SPICE Hands-On Lessons Using WGC
Overview
Instructions for each lesson are provided in a separate section below. They follow the lesson steps and individual assignments within each step, indicate which WGC computation panels (``calculations'') should be used and what inputs should be entered or selected in these calculations, and what key outputs should be expected from WGC. Where applicable, they indicate that a particular quantity computed in the lesson cannot be computed by WGC. WGC and WGC Tutorial URLs
https://wgc.jpl.nasa.gov:8443/webgeocalc/#NewCalculation https://wgc2.jpl.nasa.gov:8443/webgeocalc/#NewCalculationWGC server at ESAC can be accessed at:
http://spice.esac.esa.int/webgeocalc/#NewCalculationProject-specific WGC servers (e.g. for KPLO) can be accessed at the URLs provided during the class. The WGC tutorial and examples are linked from the WGC introduction page on the NAIF server:
https://naif.jpl.nasa.gov/naif/webgeocalc.html ``CASSINI Remote Sensing'' Hands-On Lesson Using WGCKernels Used
Time Conversion (convtm)
Time system UTC Time format Calendar date and time Input time 2004 jun 11 19:32:00 Output time system TDB Output time format Seconds past J2000WGC will return the following ET seconds past J2000:
140254384.184620To compute calendar ET in the default format, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2004 jun 11 19:32:00 Output time system TDBWGC will return the following calendar ET time string:
2004-06-11 19:33:04.184625 TDBTo compute calendar ET in a custom format, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2004 jun 11 19:32:00 Output time system TDB Custom format YYYY-MON-DDTHR:MN:SC ::TDBWGC will return the following calendar ET time string:
2004-JUN-11T19:33:04To compute spacecraft clock time, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2004 jun 11 19:32:00 Output time system Spacecraft clock (SCLK=-82)WGC will return the following SCLK time string:
1/1465674964.105 Time Conversion -- Selected Extra Credit
Time system UTC Time format Calendar date and time Input time 2004 jun 11 19:32:00 Output time system TDB Output time format Julian DateWGC will return the following TDB time string:
2453168.314631800 JD TDB5. To compute the earliest UTC time that can be converted to CASSINI spacecraft clock, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system Spacecraft clock (SCLK=-82) Time format Spacecraft clock ticks Input time 0.0 Output time system UTC Output time format Calendar (year-month-day)WGC will return the following UTC time string:
1980-01-01 00:00:00.000000 UTC6. To convert the spacecraft clock time obtained in the regular task back to UTC Time and present it in ISO calendar date format, with a resolution of milliseconds, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system Spacecraft clock (SCLK=-82) Time format Spacecraft clock string Input time 1/1465674964.105 Output time system UTC Custom format YYYY-MM-DDTHR:MN:SC.### ::RNDWGC will return the following UTC time string:
2004-06-11T19:31:59.999 Obtaining Target States and Positions (getsta)
Target type Object Target PHOEBE Observer type Object Observer CASSINI Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 State representation RectangularWGC will return the following state vector, km and km/s:
-119.92092897 2194.13933986 -57.63897986 -5.98023114 -2.11880531 -0.29482213To compute the apparent position of Earth as seen from CASSINI in the J2000 frame and one way light time between CASSINI and the apparent position of Earth, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target EARTH Observer type Object Observer CASSINI Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 State representation RectangularWGC will return the following position vector, km, and one way light time, s:
353019393.12261910 -1328180352.14030500 -568134171.69730540 4960.42691203To compute the apparent position of Sun as seen from Phoebe in the J2000 frame, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target SUN Observer type Object Observer PHOEBE Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 State representation RectangularWGC will return the following position vector, km:
376551465.27159620 -1190495630.30282120 -508438699.11000470Note that WGC will also compute the distance between Sun and Phoebe body centers, km:
1348176829.09957000but it cannot convert this distance to AUs. Obtaining Target States and Positions -- Selected Extra Credit
Target type Object Target SUN Observer type Object Observer SATURN Reference frame J2000 Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 State representation Rectangularand these corrections for NONE (the geometric position), LT (the reception light time only corrected position), and LT+S (the apparent position):
Light propagation No correction Light propagation To observer Light-time algorithm Newtonian Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberrationWGC will return the following position vectors, km, correspondingly:
367770592.36738380 -1197330367.35880470 -510369088.67673343 367770572.92069393 -1197330417.73307600 -510369109.50883270 367726456.16774523 -1197342627.87914750 -510372252.74684080Unload the JUP310 Jovian satellite ephemeris SPK before proceeding to the next step. Spacecraft Orientation and Reference Frames (xform)
Target type Object Target PHOEBE Observer type Object Observer CASSINI Reference frame IAU_PHOEBE Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 State representation RectangularWGC will return the following state vector, km and km/s:
-1982.63976162 -934.53047112 -166.56259513 3.97083213 -3.81249566 -2.37166299To compute the angular separation between the apparent position of Earth and the CASSINI high gain antenna (HGA) boresight, specify/select the following inputs in the ``Angular Separation'' calculation:
Specification type Two directions Direction type 1 Position Target 1 EARTH Target shape 1 Point Observer 1 CASSINI Light propagation 1 To observer Light-time algorithm 1 Newtonian Stellar aberration 1 Corrected for stellar aberration Use anti-vector 1 No Direction type 2 Vector Ray vector 2 Z axis in CASSINI_HGA frame Correction type 2 None Use anti-vector 2 No Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00WGC will return the following output separation angle, deg:
71.92414848 Spacecraft Orientation and Reference Frames -- Selected Extra Credit
Specification type Two directions Direction type 1 Position Target 1 SUN Target shape 1 Point Observer 1 CASSINI Light propagation 1 To observer Light-time algorithm 1 Newtonian Stellar aberration 1 Corrected for stellar aberration Use anti-vector 1 No Direction type 2 Vector Ray vector 2 Z axis in CASSINI_HGA frame Correction type 2 None Use anti-vector 2 No Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00WGC will return the following output separation angle, deg:
73.12975129This angle is less than 90 degrees so the HGA is illuminated. Computing Sub-s/c and Sub-solar Points on an Ellipsoid and a DSK (subpts)
Target PHOEBE Reference frame IAU_PHOEBE Observer CASSINI Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
104.49789074 45.26884577 7.38331473Note that WCG will compute the altitude but it will be labeled ``Observer Distance (km)'' in the output table and will have the following distance, km:
2084.11604205To compute the apparent sub-observer point of CASSINI on Phoebe in the IAU_PHOEBE frame using a DSK shape model and the nadir point method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target PHOEBE Reference frame IAU_PHOEBE Observer CASSINI Sub-point type NADIR/DSK/UNPRIORITIZED Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
95.37257468 40.94817689 6.60990270Note that WCG will compute the altitude but it will be labeled ``Observer Distance (km)'' in the output table and will have the following distance, km:
2094.24215979To compute the apparent sub-solar point on Phoebe modeled as an ellipsoid as seen from CASSINI in the IAU_PHOEBE frame , specify/select the following inputs in the ``Sub-Solar Point'' calculation:
Target PHOEBE Reference frame IAU_PHOEBE Observer CASSINI Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
78.68071625 76.87865160 -21.88456729To compute the apparent sub-solar point on Phoebe as seen from CASSINI in the IAU_PHOEBE frame using a DSK shape model and the nadir point method, specify/select the following inputs in the ``Sub-Solar Point'' calculation:
Target PHOEBE Reference frame IAU_PHOEBE Observer CASSINI Sub-point type NADIR/DSK/UNPRIORITIZED Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
79.11113709 77.33831624 -22.02817575 Computing Sub-spacecraft and Sub-solar Points -- Selected Extra Credit
Target PHOEBE Reference frame IAU_PHOEBE Observer CASSINI Sub-point type Intercept: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
74.54229300 79.60686277 -24.870784542. To compute the geometric sub-observer point of CASSINI on Phoebe in the IAU_PHOEBE frame using the 'Near point: ellipsoid' method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target PHOEBE Reference frame IAU_PHOEBE Observer CASSINI Sub-point type Near point: ellipsoid Light propagation No correction Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
104.49708353 45.27041148 7.384091743. To compute the planetocentric coordinates of the geometric sub-observer point of CASSINI on Phoebe in the IAU_PHOEBE frame, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target PHOEBE Reference frame IAU_PHOEBE Observer CASSINI Sub-point type Near point: ellipsoid Light propagation No correction Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation PlanetocentricWGC will return the following latitude and longitude, deg, and radius, km:
3.70986500 23.42331102 114.12088079WGC does not allow computing planetodetic and planetographic coordinates on bodies that are tri-axial ellipsoids with different equatorial radii. Choosing the planetographic coordinates for output will result in the following error message:
Reference frame center is not a spheroid. Planetodetic and planetographic coordinate representations can only be calculated for bodies with equal equatorial axes. The center body of the reference frame, PHOEBE, has equatorial axes that differ, 115.0 and 110.0. Use planetocentric coordinates instead. Intersecting Vectors with an Ellipsoid and a DSK (fovint)
Target PHOEBE Front body shape Ellipsoid Reference frame IAU_PHOEBE Observer CASSINI Ray vector CASSINI_ISS_NAC field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vectors, km:
91.02635667 67.19017758 2.03016242 89.99095003 66.72560204 14.73282379 80.96314734 76.64306316 14.42662102 81.99683969 77.10572511 1.69850758To compute the planetocentric longitudes and latitudes of the FOV boundary vector surface intercept points on the surface of Phoebe modeled as an ellipsoid in the IAU_PHOEBE frame, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target PHOEBE Front body shape Ellipsoid Reference frame IAU_PHOEBE Observer CASSINI Ray vector CASSINI_ISS_NAC field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation PlanetocentricWGC will return the following longitudes and latitudes, deg:
36.43251123 1.02800787 36.55583078 7.49186596 43.42988023 7.37325329 43.23917363 0.86454948Both computations above also returned the illumination angles the FOV boundary vector surface intercept points but these angles were omitted from the output shown above. To compute the Cartesian position vectors of the FOV boresight surface intercept point on the surface of Phoebe modeled as an ellipsoid in the IAU_PHOEBE frame, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target PHOEBE Front body shape Ellipsoid Reference frame IAU_PHOEBE Observer CASSINI Ray vector CASSINI_ISS_NAC boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
86.39001297 72.08919557 8.25459687To compute the planetocentric longitude and latitude of the FOV boresight surface intercept point on the surface of Phoebe modeled as an ellipsoid in the IAU_PHOEBE frame and the illumination angles and the local solar time on a 24-hour clock at this point, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target PHOEBE Front body shape Ellipsoid Reference frame IAU_PHOEBE Observer CASSINI Ray vector CASSINI_ISS_NAC boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
39.84371945 4.19587780the following incidence, emission, and phase angles, deg:
18.24722120 17.85830930 28.13948173and the following local solar time:
11:31:50To compute the Cartesian position vectors of the FOV boundary vector surface intercept points on the surface of Phoebe in the IAU_PHOEBE frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target PHOEBE Front body shape DSK model Reference frame IAU_PHOEBE Observer CASSINI Ray vector CASSINI_ISS_NAC field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vectors, km:
78.76953031 61.56990460 0.96393463 76.58597747 60.57892774 13.65732587 68.67722558 71.10033236 13.44360714 73.18644320 73.13094296 0.93419040To compute the planetocentric longitudes and latitudes of the FOV boundary vector surface intercept points on the surface of Phoebe in the IAU_PHOEBE frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target PHOEBE Front body shape DSK model Reference frame IAU_PHOEBE Observer CASSINI Ray vector CASSINI_ISS_NAC field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation PlanetocentricWGC will return the following longitudes and latitudes, deg:
38.01282665 0.55240127 38.34372978 7.96186655 45.99314861 7.74452041 44.97826691 0.51732714Both computations above also returned the illumination angles the FOV boundary vector surface intercept points but these angles were omitted from the output shown above. To compute the Cartesian position vectors of the FOV boresight surface intercept point on the surface of Phoebe in the IAU_PHOEBE frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target PHOEBE Front body shape DSK model Reference frame IAU_PHOEBE Observer CASSINI Ray vector CASSINI_ISS_NAC boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
74.32619282 66.60211698 7.24732469To compute the planetocentric longitude and latitude of the FOV boresight surface intercept point on the surface of Phoebe in the IAU_PHOEBE frame using a DSK shape model and the illumination angles and the local solar time on a 24-hour clock at this point, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target PHOEBE Front body shape DSK model Reference frame IAU_PHOEBE Observer CASSINI Ray vector CASSINI_ISS_NAC boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2004 JUN 11 19:32:00 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
41.86284040 4.15340347the following incidence, emission, and phase angles, deg:
33.19950064 9.22984680 28.13948113and the following local solar time:
11:39:55 ``ExoMars 2016 Remote Sensing'' Hands-On Lesson Using WGCKernels Used
Time Conversion (convtm)
Time system UTC Time format Calendar date and time Input time 2018 jun 11 19:32:00 Output time system TDB Output time format Seconds past J2000WGC will return the following ET seconds past J2000:
582017589.184640To compute calendar ET in the default format, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2018 jun 11 19:32:00 Output time system TDB Output time format Calendar (year-month-day)WGC will return the following calendar ET time string:
2018-06-11 19:33:09.184642To compute calendar ET in a custom format, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2018 jun 11 19:32:00 Output time system TDB Custom format YYYY-MON-DDTHR:MN:SC ::TDBWGC will return the following calendar ET time string:
2018-JUN-11T19:33:09To compute spacecraft clock time, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2018 jun 11 19:32:00 Output time system Spacecraft clock (SCLK=-143) Output time format Spacecraft clock stringWGC will return the following SCLK time string:
1/0070841719.26698 Time Conversion -- Selected Extra Credit
Time system UTC Time format Calendar date and time Input time 2018 jun 11 19:32:00 Output time system TDB Output time format Julian DateWGC will return the following TDB time string:
2458281.314689600 JD TDB5. To compute the earliest UTC time that can be converted to ExoMars-16 TGO spacecraft clock, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system Spacecraft clock (SCLK=-143) Time format Spacecraft clock ticks Input time 0.0 Output time system UTC Output time format Calendar (year-month-day)WGC will return the following UTC time string:
2016-03-13 21:34:13.193650 UTC6. To convert the spacecraft clock time obtained in the regular task back to UTC Time and present it in ISO calendar date format, with a resolution of milliseconds, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system Spacecraft clock (SCLK=-143) Time format Spacecraft clock string Input time 1/0070841719.26698 Output time system UTC Custom format YYYY-MM-DDTHR:MN:SC.### ::RNDWGC will return the following UTC time string:
2018-06-11T19:32:00.000 Obtaining Target States and Positions (getsta)
Target type Object Target MARS Observer type Object Observer EXOMARS 2016 TGO Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 State representation RectangularWGC will return the following state vector, km and km/s:
2911.82242547 -2033.80245966 -1291.70085522 1.30950490 -0.05597018 3.10432898To compute the apparent position of Earth as seen from TGO in the J2000 frame and one way light time between TGO and the apparent position of Earth, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target EARTH Observer type Object Observer EXOMARS 2016 TGO Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 State representation RectangularWGC will return the following position vector, km, and one way light time, s:
-49609884.08045448 57070665.86178913 30304236.92973865To compute the apparent position of Sun as seen from Mars in the J2000 frame, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target SUN Observer type Object Observer MARS Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 State representation RectangularWGC will return the following position vector, km:
-24712734.28893231 194560532.94319060 89906636.78934350Note that WGC will also compute the distance between Sun and Mars body centers, km:
215749214.49206870but it cannot convert this distance to AUs. Obtaining Target States and Positions -- Selected Extra Credit
Target type Object Target SUN Observer type Object Observer MARS Reference frame J2000 Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 State representation Rectangularand these corrections for NONE (the geometric position), LT (the reception light time only corrected position), and LT+S (the apparent position):
Light propagation No correction Light propagation To observer Light-time algorithm Newtonian Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberrationWGC will return the following position vectors, km, correspondingly:
-24730875.20069792 194558449.55971023 89906170.85450794 -24730866.48857886 194558445.24649155 89906168.75352160 -24712734.28893231 194560532.94319060 89906636.78934350 Spacecraft Orientation and Reference Frames (xform)
Target type Object Target MARS Observer type Object Observer EXOMARS 2016 TGO Reference frame IAU_MARS Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 State representation RectangularWGC will return the following state vector, km and km/s:
-2843.46412456 2235.45954373 1095.89496870 0.31144328 -1.15192925 3.08212262To compute the angular separation between the apparent position of Mars and the TGO nominal instrument view direction, specify/select the following inputs in the ``Angular Separation'' calculation:
Specification type Two directions Direction type 1 Position Target 1 MARS Target shape 1 Point Observer 1 EXOMARS 2016 TGO Light propagation 1 To observer Light-time algorithm 1 Newtonian Stellar aberration 1 Corrected for stellar aberration Use anti-vector 1 No Direction type 2 Vector Ray vector 2 Y axis in TGO_SPACECRAFT frame Correction type 2 None Use anti-vector 2 Yes Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00WGC will return the following output separation angle, deg:
5.43847143 Spacecraft Orientation and Reference Frames -- Selected Extra Credit
Specification type Two directions Direction type 1 Position Target 1 SUN Target shape 1 Point Observer 1 EXOMARS 2016 TGO Light propagation 1 To observer Light-time algorithm 1 Newtonian Stellar aberration 1 Corrected for stellar aberration Use anti-vector 1 No Direction type 2 Vector Ray vector 2 Y axis in TGO_SPACECRAFT frame Correction type 2 None Use anti-vector 2 Yes Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00WGC will return the following output separation angle, deg:
130.54279733This angle is greater than 90 degrees so the science deck is not illuminated. Computing Sub-s/c and Sub-solar Points on an Ellipsoid and a DSK (subpts)
Target MARS Reference frame IAU_MARS Observer EXOMARS 2016 TGO Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
2554.16465516 -2008.01038262 -983.24042077Note that WCG will compute the altitude but it will be labeled ``Observer Distance (km)'' in the output table and will have the following distance, km:
385.04529279To compute the apparent sub-observer point of TGO on Mars in the IAU_MARS frame using a DSK shape model and the nadir point method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target MARS Reference frame IAU_MARS Observer EXOMARS 2016 TGO Sub-point type NADIR/DSK/UNPRIORITIZED Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
2554.22331603 -2008.05650034 -983.26327153Note that WCG will compute the altitude but it will be labeled ``Observer Distance (km)'' in the output table and will have the following distance, km:
384.96725758To compute the apparent sub-solar point on Mars as seen from TGO in the IAU_MARS frame using the ``Near point: ellipsoid'' method, specify/select the following inputs in the ``Sub-Solar Point'' calculation:
Target MARS Reference frame IAU_MARS Observer EXOMARS 2016 TGO Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
487.58869797 -3348.61049793 -286.69722014To compute the apparent sub-solar point on Mars as seen from TGO in the IAU_MARS frame using a DSK shape model and the nadir point method, specify/select the following inputs in the ``Sub-Solar Point'' calculation:
Target MARS Reference frame IAU_MARS Observer EXOMARS 2016 TGO Sub-point type NADIR/DSK/UNPRIORITIZED Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
488.09583992 -3352.09336966 -286.99895399 Computing Sub-spacecraft and Sub-solar Points -- Selected Extra Credit
Target MARS Reference frame IAU_MARS Observer EXOMARS 2016 TGO Sub-point type Intercept: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
487.54669671 -3348.32205372 -290.077215112. To compute the apparent sub-observer point of TGO on Phobos in the IAU_PHOBOS frame using the 'Near point: ellipsoid' method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target PHOBOS Reference frame IAU_PHOBOS Observer EXOMARS 2016 TGO Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
12.05913904 4.17308831 -0.675466163. To compute the planetocentric coordinates of the apparent sub-observer point of TGO on Phobos in the IAU_PHOBOS frame using the 'Near point: ellipsoid' method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target PHOBOS Reference frame IAU_PHOBOS Observer EXOMARS 2016 TGO Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation PlanetocentricWGC will return the following latitude and longitude, deg, and radius, km:
-3.03000878 19.08827715 12.77864449WGC does not allow computing planetodetic and planetographic coordinates on bodies that are tri-axial ellipsoids with different equatorial radii. Choosing the planetographic coordinates for output will result in the following error message:
Reference frame center is not a spheroid. Planetodetic and planetographic coordinate representations can only be calculated for bodies with equal equatorial axes. The center body of the reference frame, PHOBOS, has equatorial axes that differ, 13.0 and 11.4. Use planetocentric coordinates instead. Intersecting Vectors with an Ellipsoid and a DSK (fovint)
Target MARS Front body shape Ellipsoid Reference frame IAU_MARS Observer EXOMARS 2016 TGO Ray vector TGO_NOMAD_LNO_NAD field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vectors, km:
2535.00445179 -2028.52838809 -990.59432639 2525.05593461 -2042.07461651 -988.19646467 2525.20138167 -2042.10358036 -987.76992477 2535.14886773 -2028.55774855 -990.16957287To compute the planetocentric longitudes and latitudes of the FOV boundary vector surface intercept points on the surface of Mars modeled as an ellipsoid in the IAU_MARS frame, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MARS Front body shape Ellipsoid Reference frame IAU_MARS Observer EXOMARS 2016 TGO Ray vector TGO_NOMAD_LNO_NAD field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation PlanetocentricWGC will return the following longitudes and latitudes, deg:
-38.66704048 -16.96728341 -38.96331703 -16.92492977 -38.96210076 -16.91739679 -38.66585276 -16.95978024Both computations above also returned the illumination angles the FOV boundary vector surface intercept points but these angles were omitted from the output shown above. To compute the Cartesian position vectors of the FOV boresight surface intercept point on the surface of Mars modeled as an ellipsoid in the IAU_MARS frame, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MARS Front body shape Ellipsoid Reference frame IAU_MARS Observer EXOMARS 2016 TGO Ray vector TGO_NOMAD_LNO_NAD boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
2530.12229730 -2035.30663798 -989.18816471To compute the planetocentric longitude and latitude of the FOV boresight surface intercept point on the surface of Mars modeled as an ellipsoid in the IAU_MARS frame and the illumination angles and the local solar time on a 24-hour clock at this point, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MARS Front body shape Ellipsoid Reference frame IAU_MARS Observer EXOMARS 2016 TGO Ray vector TGO_NOMAD_LNO_NAD boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
-38.81424755 -16.94244506the following incidence, emission, and phase angles, deg:
43.72871855 6.08637448 49.45727680and the following local solar time:
14:51:36To compute the Cartesian position vectors of the FOV boundary vector surface intercept points on the surface of Mars in the IAU_MARS frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MARS Front body shape DSK model Reference frame IAU_MARS Observer EXOMARS 2016 TGO Ray vector TGO_NOMAD_LNO_NAD field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vectors, km:
2535.27825807 -2028.71207603 -990.68783903 2525.35917194 -2042.25880287 -988.29907684 2525.50638508 -2042.28889640 -987.87359025 2535.42250373 -2028.74138215 -990.26344789To compute the planetocentric longitudes and latitudes of the FOV boundary vector surface intercept points on the surface of Mars in the IAU_MARS frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MARS Front body shape DSK model Reference frame IAU_MARS Observer EXOMARS 2016 TGO Ray vector TGO_NOMAD_LNO_NAD field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation PlanetocentricWGC will return the following longitudes and latitudes, deg:
-38.66655257 -16.96717476 -38.96247962 -16.92485905 -38.96125942 -16.91733365 -38.66536612 -16.95967901Both computations above also returned the illumination angles the FOV boundary vector surface intercept points but these angles were omitted from the output shown above. To compute the Cartesian position vectors of the FOV boresight surface intercept point on the surface of Mars in the IAU_MARS frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MARS Front body shape DSK model Reference frame IAU_MARS Observer EXOMARS 2016 TGO Ray vector TGO_NOMAD_LNO_NAD boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation RectangularWGC will return the following position vector, km:
2530.47105768 -2035.52942714 -989.30698550To compute the planetocentric longitude and latitude of the FOV boresight surface intercept point on the surface of Mars in the IAU_MARS frame using a DSK shape model and the illumination angles and the local solar time on a 24-hour clock at this point, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MARS Front body shape DSK model Reference frame IAU_MARS Observer EXOMARS 2016 TGO Ray vector TGO_NOMAD_LNO_NAD boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2018 JUN 11 19:32:00 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
-38.81345348 -16.94234008the following incidence, emission, and phase angles, deg:
44.38719437 5.46181871 49.45727689and the following local solar time:
14:51:36 ``KPLO Remote Sensing'' Hands-On Lesson Using WGCKernels Used
Time Conversion (convtm)
Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Output time system TDB Output time format Seconds past J2000WGC will return the following ET seconds past J2000:
662822439.183960To compute calendar ET in the default format, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Output time system TDB Output time format Calendar (year-month-day)WGC will return the following calendar ET time string:
2021-01-02 01:20:39.183959 TDBTo compute calendar ET in a custom format, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Output time system TDB Custom format YYYY-MON-DDTHR:MN:SC ::TDBWGC will return the following calendar ET time string:
2021-JAN-02T01:20:39To compute spacecraft clock time, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Output time system Spacecraft clock (SCLK=-155) Output time format Spacecraft clock stringWGC will return the following SCLK time string:
1/1095:4530960 Time Conversion -- Selected Extra Credit
Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Output time system TDB Output time format Julian DateWGC will return the following TDB time string:
2459216.556009100 JD TDB5. To compute the earliest UTC time that can be converted to KPLO spacecraft clock, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system Spacecraft clock (SCLK=-155) Time format Spacecraft clock ticks Input time 0.0 Output time system UTC Output time format Calendar (year-month-day)WGC will return the following UTC time string:
2000-01-01 12:00:00.000000 UTC6. To convert the spacecraft clock time obtained in the regular task back to UTC Time and present it in ISO calendar date format, with a resolution of milliseconds, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system Spacecraft clock (SCLK=-155) Time format Spacecraft clock string Input time 1/1095:4530960 Output time system UTC Custom format YYYY-MM-DDTHR:MN:SC.### ::RNDWGC will return the following UTC time string:
2021-01-02T01:19:30.000 Obtaining Target States and Positions (getsta)
Target type Object Target MOON Observer type Object Observer KOREA PATHFINDER LUNAR ORBITER Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 State representation RectangularWGC will return the following state vector, km and km/s:
-1644.52619495 403.44030666 -659.48288212 -0.68365295 -0.53710111 1.40358849To compute the apparent position of Earth as seen from KPLO in the J2000 frame and one way light time between KPLO and the apparent position of Earth, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target EARTH Observer type Object Observer KOREA PATHFINDER LUNAR ORBITER Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 State representation RectangularWGC will return the following position vector, km, and one way light time, s:
274796.47231277 -229775.66219176 -132406.96430545To compute the apparent position of Sun as seen from Moon in the J2000 frame, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target SUN Observer type Object Observer MOON Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 State representation RectangularWGC will return the following position vector, km:
29767887.20725118 -132448141.93447962 -57447546.63910401Note that WGC will also compute the distance between Sun and Moon body centers, km:
147407116.60408977but it cannot convert this distance to AUs. Obtaining Target States and Positions -- Selected Extra Credit
Target type Object Target SUN Observer type Object Observer MOON Reference frame J2000 Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 State representation Rectangularand these corrections for NONE (the geometric position), LT (the reception light time only corrected position), and LT+S (the apparent position):
Light propagation No correction Light propagation To observer Light-time algorithm Newtonian Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberrationWGC will return the following position vectors, km, correspondingly:
29782863.55498986 -132445301.95992541 -57446341.26913592 29782869.37259879 -132445297.37780900 -57446339.48277447 29767887.20725118 -132448141.93447962 -57447546.63910401 Spacecraft Orientation and Reference Frames (xform)
Target type Object Target MOON Observer type Object Observer KOREA PATHFINDER LUNAR ORBITER Reference frame MOON_ME Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 State representation RectangularWGC will return the following state vector, km and km/s:
-1371.82545359 -948.54151590 -721.46522871 -0.54249964 -0.35188864 1.51918815To compute the angular separation between the apparent position of Moon and the KPLO nominal instrument view direction, specify/select the following inputs in the ``Angular Separation'' calculation:
Specification type Two directions Direction type 1 Position Target 1 MOON Target shape 1 Point Observer 1 KOREA PATHFINDER LUNAR ORBITER Light propagation 1 To observer Light-time algorithm 1 Newtonian Stellar aberration 1 Corrected for stellar aberration Use anti-vector 1 No Direction type 2 Vector Ray vector 2 Z axis in KPLO_SPACECRAFT frame Correction type 2 None Use anti-vector 2 No Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30WGC will return the following output separation angle, deg:
29.98967834 Spacecraft Orientation and Reference Frames -- Selected Extra Credit
Specification type Two directions Direction type 1 Position Target 1 SUN Target shape 1 Point Observer 1 KOREA PATHFINDER LUNAR ORBITER Light propagation 1 To observer Light-time algorithm 1 Newtonian Stellar aberration 1 Corrected for stellar aberration Use anti-vector 1 No Direction type 2 Vector Ray vector 2 Z axis in KPLO_SPACECRAFT frame Correction type 2 None Use anti-vector 2 No Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30WGC will return the following output separation angle, deg:
133.58682151This angle is greater than 90 degrees so the science deck is not illuminated. Computing Sub-s/c and Sub-solar Points on an Ellipsoid and a DSK (subpts)
Target MOON Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation RectangularWGC will return the following position vector, km:
1311.59999155 906.89881368 689.78167845Note that WCG will compute the altitude but it will be labeled ``Observer Distance (km)'' in the output table and will have the following distance, km:
79.93809991To compute the apparent sub-observer point of KPLO on Moon in the MOON_ME frame using a DSK shape model and the nadir point method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target MOON Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Sub-point type NADIR/DSK/UNPRIORITIZED Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation RectangularWGC will return the following position vector, km:
1310.56131465 906.18062554 689.23543792Note that WCG will compute the altitude but it will be labeled ``Observer Distance (km)'' in the output table and will have the following distance, km:
81.31384578To compute the apparent sub-solar point on Moon as seen from KPLO in the MOON_ME frame using the ``Near point: ellipsoid'' method, specify/select the following inputs in the ``Sub-Solar Point'' calculation:
Target MOON Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation RectangularWGC will return the following position vector, km:
1333.60421904 -1113.43170986 -18.12110449To compute the apparent sub-solar point on Moon as seen from KPLO in the MOON_ME frame using a DSK shape model and the nadir point method, specify/select the following inputs in the ``Sub-Solar Point'' calculation:
Target MOON Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Sub-point type NADIR/DSK/UNPRIORITIZED Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation RectangularWGC will return the following position vector, km:
1332.31355108 -1112.35412588 -18.10356680 Computing Sub-spacecraft and Sub-solar Points -- Selected Extra Credit
Target MOON Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Sub-point type Intercept: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation RectangularWGC will return the following position vector, km:
1333.60421904 -1113.43170986 -18.121104492. To compute the geometric sub-observer point of KPLO on Mars in the IAU_MARS frame using the 'Near point: ellipsoid' method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target MARS Reference frame IAU_MARS Observer KOREA PATHFINDER LUNAR ORBITER Sub-point type Near point: ellipsoid Light propagation No correction Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation RectangularWGC will return the following position vector, km:
-3128.42290664 -249.60832325 -1290.347829923. To compute the planetocentric coordinates of the apparent sub-observer point of KPLO on Mars in the IAU_MARS frame using the 'Near point: ellipsoid' method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target MARS Reference frame IAU_MARS Observer KOREA PATHFINDER LUNAR ORBITER Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation PlanetocentricWGC will return the following planetocentric longitude and latitude, deg, and radius, km:
-173.59883389 -22.35046430 3393.27735444To compute the planetographic coordinates of the apparent sub-observer point of KPLO on Mars in the IAU_MARS frame using the 'Near point: ellipsoid' method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target MARS Reference frame IAU_MARS Observer KOREA PATHFINDER LUNAR ORBITER Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation PlanetographicWGC will return the following planetographic longitude and latitude, deg, and radius, km:
173.59883389 -22.58938265 3393.27735444 Intersecting Vectors with an Ellipsoid and a DSK (fovint)
Target MOON Front body shape Ellipsoid Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Ray vector KPLO_POLCAM-R field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation RectangularWGC will return the following position vectors, km:
1330.39103977 884.38754332 682.99129900 1325.50103256 881.18320405 696.50695157 1317.31188523 893.66760811 696.13674177 1321.96554453 896.72462104 683.26481915To compute the planetocentric longitudes and latitudes of the FOV boundary vector surface intercept points on the surface of Moon modeled as an ellipsoid in the MOON_ME frame, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MOON Front body shape Ellipsoid Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Ray vector KPLO_POLCAM-R field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation PlanetocentricWGC will return the following longitudes and latitudes, deg:
33.61427482 23.14822282 33.61566370 23.63385243 34.15306470 23.62052663 34.15009526 23.15803308Both computations above also returned the illumination angles the FOV boundary vector surface intercept points but these angles were omitted from the output shown above. To compute the Cartesian position vectors of the FOV boresight surface intercept point on the surface of Moon modeled as an ellipsoid in the MOON_ME frame, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MOON Front body shape Ellipsoid Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Ray vector KPLO_POLCAM-R boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation RectangularWGC will return the following position vector, km:
1323.70921165 889.16480649 689.73808789To compute the planetocentric longitude and latitude of the FOV boresight surface intercept point on the surface of Moon modeled as an ellipsoid in the MOON_ME frame and the illumination angles and the local solar time on a 24-hour clock at this point, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MOON Front body shape Ellipsoid Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Ray vector KPLO_POLCAM-R boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
33.89013253 23.39041849the following incidence, emission, and phase angles, deg:
75.36348395 15.71930997 90.97449383and the following local solar time:
16:54:59To compute the Cartesian position vectors of the FOV boundary vector surface intercept points on the surface of Moon in the MOON_ME frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MOON Front body shape DSK model Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Ray vector KPLO_POLCAM-R field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation RectangularWGC will return the following position vectors, km:
1330.03476491 883.83684875 682.66101343 1324.62670338 879.91370704 696.03612460 1315.94194737 892.28962201 695.50031146 1321.20632985 895.93628065 682.68377376To compute the planetocentric longitudes and latitudes of the FOV boundary vector surface intercept points on the surface of Moon in the MOON_ME frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MOON Front body shape DSK model Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Ray vector KPLO_POLCAM-R field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation PlanetocentricWGC will return the following longitudes and latitudes, deg:
33.60489695 23.14600512 33.59501327 23.63854822 34.13968615 23.62650516 34.14197605 23.15430060Both computations above also returned the illumination angles the FOV boundary vector surface intercept points but these angles were omitted from the output shown above. To compute the Cartesian position vectors of the FOV boresight surface intercept point on the surface of Moon in the MOON_ME frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MOON Front body shape DSK model Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Ray vector KPLO_POLCAM-R boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation RectangularWGC will return the following position vector, km:
1322.78357023 888.02386624 689.12826986To compute the planetocentric longitude and latitude of the FOV boresight surface intercept point on the surface of Moon in the MOON_ME frame using a DSK shape model and the illumination angles and the local solar time on a 24-hour clock at this point, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MOON Front body shape DSK model Reference frame MOON_ME Observer KOREA PATHFINDER LUNAR ORBITER Ray vector KPLO_POLCAM-R boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2021 JAN 02 01:19:30 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
33.87463406 23.39034854the following incidence, emission, and phase angles, deg:
79.62243678 12.44723587 90.97449322and the following local solar time:
16:54:55 ``BepiColombo MPO Remote Sensing'' Hands-On Lesson Using WGCKernels Used
Time Conversion (convtm)
Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Output time system TDB Output time format Seconds past J2000WGC will return the following ET seconds past J2000:
852386745.184030To compute calendar ET in the default format, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Output time system TDB Output time format Calendar (year-month-day)WGC will return the following calendar ET time string:
2027-01-05 02:05:45.184031 TDBTo compute calendar ET in a custom format, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Output time system TDB Custom format YYYY-MON-DDTHR:MN:SC ::TDBWGC will return the following calendar ET time string:
2027-JAN-05T02:05:45To compute spacecraft clock time, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Output time system Spacecraft clock (SCLK=-121) Output time format Spacecraft clock stringWGC will return the following SCLK time string:
1/0863834674:28127 Time Conversion -- Selected Extra Credit
Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Output time system TDB Output time format Julian DateWGC will return the following TDB time string:
2461410.5873285187 JD TDB5. To compute the earliest UTC time that can be converted to BepiColombo MPO spacecraft clock, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system Spacecraft clock (SCLK=-121) Time format Spacecraft clock ticks Input time 0.0 Output time system UTC Output time format Calendar (year-month-day)WGC will return the following UTC time string:
1999-08-22 00:00:05.204000 UTC6. To convert the spacecraft clock time obtained in the regular task back to UTC Time and present it in ISO calendar date format, with a resolution of milliseconds, specify/select the following inputs in the ``Time Conversion'' calculation:
Time system Spacecraft clock (SCLK=-121) Time format Spacecraft clock string Input time 1/0863834674:28127 Output time system UTC Custom format YYYY-MM-DDTHR:MN:SC.### ::RNDWGC will return the following UTC time string:
2027-01-05T02:04:36.000 Obtaining Target States and Positions (getsta)
Target type Object Target MERCURY Observer type Object Observer BEPICOLOMBO MPO Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 State representation RectangularWGC will return the following state vector, km and km/s:
-683.20708781 -1438.94585601 -2427.81935629 0.03613279 2.35990408 -1.78341780To compute the apparent position of Earth as seen from MPO in the J2000 frame and one way light time between MPO and the apparent position of Earth, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target EARTH Observer type Object Observer BEPICOLOMBO MPO Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 State representation RectangularWGC will return the following position vector, km, and one way light time, s:
-59257854.69091041 185201786.21846142 88178321.17891033 712.19341196To compute the apparent position of Sun as seen from Mercury in the J2000 frame, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target SUN Observer type Object Observer MERCURY Reference frame J2000 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 State representation RectangularWGC will return the following position vector, km:
-23429947.23907467 54297427.57199317 31434173.46824882Note that WGC will also compute the distance between Sun and MERCURY body centers, km:
66972235.51736662but it cannot convert this distance to AUs. Obtaining Target States and Positions -- Selected Extra Credit
Target type Object Target JUPITER Observer type Object Observer MERCURY Reference frame J2000 Light propagation No correction Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 State representation RectangularWGC will return the following position vector, km:
-623644094.41838810 532767093.11246020 251130102.034513243. To compute the position of the Sun as seen from Mercury in the J2000 frame using the following light time and aberration corrections: NONE, LT and LT+S, with the JUP365 Jovian satellite ephemeris SPK still loaded, specify/select the following inputs in the ``State Vector'' calculation (except for corrections):
Target type Object Target SUN Observer type Object Observer MERCURY Reference frame J2000 Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 State representation Rectangularand these corrections for NONE (the geometric position), LT (the reception light time only corrected position), and LT+S (the apparent position):
Light propagation No correction Light propagation To observer Light-time algorithm Newtonian Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberrationWGC will return the following position vectors, km, correspondingly:
-23438490.40236970 54294213.48461554 31433347.02463599 -23438492.54961504 54294212.27207869 31433346.55007268 -23430052.90345647 54297381.15594409 31434164.77541952Unload the JUP365 Jovian satellite ephemeris SPK before proceeding to the next step. Spacecraft Orientation and Reference Frames (xform)
Target type Object Target MERCURY Observer type Object Observer BEPICOLOMBO MPO Reference frame IAU_MERCURY Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 State representation RectangularWGC will return the following state vector, km and km/s:
-2354.69762022 -762.54754931 -1518.40846958 1.20858923 0.39425920 -2.67112542To compute the angular separation between the apparent position of MERCURY and the MPO nominal instrument view direction, specify/select the following inputs in the ``Angular Separation'' calculation:
Specification type Two directions Direction type 1 Position Target 1 MERCURY Target shape 1 Point Observer 1 BEPICOLOMBO MPO Light propagation 1 To observer Light-time algorithm 1 Newtonian Stellar aberration 1 Corrected for stellar aberration Use anti-vector 1 No Direction type 2 Vector Ray vector 2 Z axis in MPO_SPACECRAFT frame Correction type 2 None Use anti-vector 2 No Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36WGC will return the following output separation angle, deg:
0.00897766 Spacecraft Orientation and Reference Frames -- Selected Extra Credit
Specification type Two directions Direction type 1 Position Target 1 SUN Target shape 1 Point Observer 1 BEPICOLOMBO MPO Light propagation 1 To observer Light-time algorithm 1 Newtonian Stellar aberration 1 Corrected for stellar aberration Use anti-vector 1 No Direction type 2 Vector Ray vector 2 Z axis in MPO_SPACECRAFT frame Correction type 2 None Use anti-vector 2 No Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36WGC will return the following output separation angle, deg:
135.39275877This angle is greater than 90 degrees so the science deck is not illuminated. Computing Sub-s/c and Sub-solar Points on an Ellipsoid and a DSK (subpts)
Target MERCURY Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation RectangularWGC will return the following position vector, km:
1978.72631908 640.79260145 1275.61063011Note that WCG will compute the altitude but it will be labeled ``Observer Distance (km)'' in the output table and will have the following distance, km:
463.63403747To compute the apparent sub-observer point of MPO on MERCURY in the IAU_MERCURY frame using a DSK shape model and the nadir point method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target MERCURY Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Sub-point type NADIR/DSK/UNPRIORITIZED Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation RectangularWGC will return the following position vector, km:
1979.55761722 641.06180756 1276.14754350Note that WCG will compute the altitude but it will be labeled ``Observer Distance (km)'' in the output table and will have the following distance, km:
462.60838580To compute the apparent sub-solar point on MERCURY as seen from MPO in the IAU_MERCURY frame using the ``Near point: ellipsoid'' method, specify/select the following inputs in the ``Sub-Solar Point'' calculation:
Target MERCURY Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation RectangularWGC will return the following position vector, km:
1526.83084694 1903.93597088 -1.43551256To compute the apparent sub-solar point on MERCURY as seen from MPO in the IAU_MERCURY frame using a DSK shape model and the nadir point method, specify/select the following inputs in the ``Sub-Solar Point'' calculation:
Target MERCURY Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Sub-point type NADIR/DSK/UNPRIORITIZED Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation RectangularWGC will return the following position vector, km:
1525.67256731 1902.49161289 -1.43442153 Computing Sub-spacecraft and Sub-solar Points -- Selected Extra Credit
Target MERCURY Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Sub-point type Intercept: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation RectangularWGC will return the following position vector, km:
1526.82756104 1903.93860405 -1.438022022. To compute the geometric sub-observer point of MPO on Europa in the IAU_EUROPA frame using the 'Near point: ellipsoid' method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target EUROPA Reference frame IAU_EUROPA Observer BEPICOLOMBO MPO Sub-point type Near point: ellipsoid Light propagation No correction Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation RectangularWGC will return the following position vector, km:
-753.48359857 -1366.70324298 -24.295655363. To compute the planetocentric coordinates of the apparent sub-observer point of MPO on Europa in the IAU_EUROPA frame using the 'Near point: ellipsoid' method, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target EUROPA Reference frame IAU_EUROPA Observer BEPICOLOMBO MPO Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation PlanetocentricWGC will return the following latitude and longitude, deg, and radius, km:
-0.89189109 -118.86859441 1560.83489408WGC does not allow computing planetodetic and planetographic coordinates on bodies that are tri-axial ellipsoids with different equatorial radii. Choosing the planetographic coordinates for output will result in the following error message:
Reference frame center is not a spheroid. Planetodetic and planetographic coordinate representations can only be calculated for bodies with equal equatorial axes. The center body of the reference frame, EUROPA, has equatorial axes that differ, 1562.6 and 1560.3. Use planetocentric coordinates instead.Unload the JUP365 Jovian satellite ephemeris SPK before proceeding to the next step. Intersecting Vectors with an Ellipsoid and a DSK (fovint)
Target MERCURY Front body shape Ellipsoid Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Ray vector MPO_SIMBIO-SYS_HRIC_FPA field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation RectangularWGC will return the following position vectors, km:
1973.71676409 645.43602637 1281.00907254 1979.64324274 647.35380261 1270.87514457 1983.30742254 636.03711992 1270.87623002 1977.38104498 634.11904820 1281.01014962To compute the planetocentric longitudes and latitudes of the FOV boundary vector surface intercept points on the surface of MERCURY modeled as an ellipsoid in the IAU_MERCURY frame, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MERCURY Front body shape Ellipsoid Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Ray vector MPO_SIMBIO-SYS_HRIC_FPA field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation PlanetocentricWGC will return the following longitudes and latitudes, deg:
18.10854840 31.66988939 18.10801829 31.39055578 17.78079510 31.39058566 17.78033503 31.66991913Both computations above also returned the illumination angles the FOV boundary vector surface intercept points but these angles were omitted from the output shown above. To compute the Cartesian position vectors of the FOV boresight surface intercept point on the surface of MERCURY modeled as an ellipsoid in the IAU_MERCURY frame, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MERCURY Front body shape Ellipsoid Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Ray vector MPO_SIMBIO-SYS_HRIC_FPA boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation RectangularWGC will return the following position vector, km:
1978.52391704 640.74031886 1275.95016484To compute the planetocentric longitude and latitude of the FOV boresight surface intercept point on the surface of MERCURY modeled as an ellipsoid in the IAU_MERCURY frame and the illumination angles and the local solar time on a 24-hour clock at this point, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MERCURY Front body shape Ellipsoid Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Ray vector MPO_SIMBIO-SYS_HRIC_FPA boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
17.94442417 31.53033979the following incidence, emission, and phase angles, deg:
44.64363856 0.05864845 44.60856489and the following local solar time:
09:46:41To compute the Cartesian position vectors of the FOV boundary vector surface intercept points on the surface of MERCURY in the IAU_MERCURY frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MERCURY Front body shape DSK model Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Ray vector MPO_SIMBIO-SYS_HRIC_FPA field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation RectangularWGC will return the following position vectors, km:
1974.25716440 645.60214021 1281.34585342 1980.44938049 647.60139206 1271.40726839 1984.03435100 636.28474958 1271.36080444 1978.15849786 634.38367993 1281.49936711To compute the planetocentric longitudes and latitudes of the FOV boundary vector surface intercept points on the surface of MERCURY in the IAU_MERCURY frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MERCURY Front body shape DSK model Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Ray vector MPO_SIMBIO-SYS_HRIC_FPA field-of-view boundary vectors Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation PlanetocentricWGC will return the following longitudes and latitudes, deg:
18.10827034 31.66965115 18.10759955 31.39090934 17.78117498 31.39090758 17.78073720 31.66957299Both computations above also returned the illumination angles the FOV boundary vector surface intercept points but these angles were omitted from the output shown above. To compute the Cartesian position vectors of the FOV boresight surface intercept point on the surface of MERCURY in the IAU_MERCURY frame using a DSK shape model, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MERCURY Front body shape DSK model Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Ray vector MPO_SIMBIO-SYS_HRIC_FPA boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation RectangularWGC will return the following position vector, km:
1979.35742495 641.01021051 1276.48746436To compute the planetocentric longitude and latitude of the FOV boresight surface intercept point on the surface of MERCURY in the IAU_MERCURY frame using a DSK shape model and the illumination angles and the local solar time on a 24-hour clock at this point, specify/select the following inputs in the ``Surface Intercept Point'' calculation:
Target MERCURY Front body shape DSK model Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Ray vector MPO_SIMBIO-SYS_HRIC_FPA boresight Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
17.94442318 31.53033533the following incidence, emission, and phase angles, deg:
45.34859624 1.13773104 44.60856527and the following local solar time:
09:46:41 ``CASSINI In-situ Sensing'' Hands-On Lesson Using WGCKernels Used
Step-1: ``UTC to ET''
Time system UTC Time format Calendar date and time Input time 2004-06-11T19:32:00 Output time system TDB Output time format Seconds past J2000WGC will return the following ET seconds past J2000:
140254384.184620 Step-2: ``SCLK to ET''
Time system Spacecraft clock (SCLK=-82) Time format Spacecraft clock string Input time 1465674964.105 Output time system TDB Output time format Seconds past J2000WGC will return the following ET seconds past J2000:
140254384.183430Either the input SCLK time or these output ET seconds past J2000 should be used as the input time in all remaining ``In-situ Sensing'' lesson steps in order for WGC to compute values matching the results provided in the programming lesson. The output ET seconds may be saved for future use in the WGC ``Saved Values'' area by simply clicking on them with the left mouse button. The saved value can then be drag-n-dropped from the ``Saved Values'' area into the empty ``Time:'' box in the next calculation. Step-3: ``Spacecraft State''
Target type Object Target CASSINI Observer type Object Observer SUN Reference frame ECLIPJ2000 Light propagation No correction Time system TDB Time format Seconds past J2000 Input time 140254384.183430 State representation RectangularWGC will return the following state vector, km and km/s:
-376599061.91656125 1294487780.92915730 -7064853.05469811 -5.16422619 0.80171891 0.04060306 Step-4: ``Sun Direction''
Calculation type Pointing Direction Direction type Position Target SUN Observer CASSINI Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Use anti-vector No Time system TDB Time format Seconds past J2000 Input time 140254384.183430 Reference frame CASSINI_INMS Vector magnitude Unit Coordinate system RectangularWGC will return the following unit vector along the Sun direction:
-0.29020402 0.88163119 0.37216672 Step-5: ``Sub-Spacecraft Point''
Target PHOEBE Reference frame IAU_PHOEBE Observer CASSINI Sub-point type Near point: ellipsoid Light propagation No correction Time system TDB Time format Seconds past J2000 Input time 140254384.183430 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
23.42315899 3.70979740WGC cannot compute the direction from the CASSINI spacecraft to the sub-spacecraft point in the INMS frame. Step-6: ``Spacecraft Velocity''
Calculation type Pointing Direction Direction type Velocity Target CASSINI Observer Phoebe Reference frame J2000 Light propagation No correction Use anti-vector No Time system TDB Time format Seconds past J2000 Input time 140254384.183430 Reference frame CASSINI_INMS Vector magnitude Unit Coordinate system RectangularWGC will return the following unit vector along the velocity direction:
0.39578487 -0.29280766 0.87041255 ``BepiColombo MPO In-situ Sensing'' Hands-On Lesson Using WGCKernels Used
Step-1: ``UTC to ET''
Time system UTC Time format Calendar date and time Input time 2027 JAN 05 02:04:36 Output time system TDB Output time format Seconds past J2000WGC will return the following ET seconds past J2000:
852386745.184030 Step-2: ``SCLK to ET''
Time system Spacecraft clock (SCLK=-121) Time format Spacecraft clock string Input time 863834674:28127 Output time system TDB Output time format Seconds past J2000WGC will return the following ET seconds past J2000:
852386745.184040The input SCLK time should be used as the input time in all remaining ``In-situ Sensing'' lesson steps in order for WGC to compute values matching the results provided in the programming lesson. The input SCLK time may be saved for future use in the WGC ``Saved Values'' area by simply clicking on it in the results table with the left mouse button. The saved value can then be drag-n-dropped from the ``Saved Values'' area into the empty ``Time:'' box in the next calculation. Step-3: ``Spacecraft State''
Target type Object Target BEPICOLOMBO MPO Observer type Object Observer SUN Reference frame ECLIPJ2000 Light propagation No correction Time system Spacecraft clock (SCLK=-121) Time format Spacecraft clock string Input time 863834674:28127 State representation RectangularWGC will return the following state vector, km and km/s:
23439067.89610513 -62315194.63894688 -7240868.73859754 35.79932269 18.15198781 0.89057038 Step-4: ``Sun Direction''
Calculation type Pointing Direction Direction type Position Target SUN Observer BEPICOLOMBO MPO Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Use anti-vector No Time system Spacecraft clock (SCLK=-121) Time format Spacecraft clock string Input time 863834674:28127 Reference frame MPO_SERENA_STROFIO+X Vector magnitude Unit Coordinate system RectangularWGC will return the following unit vector along the Sun direction:
0.71193730 0.54950539 -0.43725177 Step-5: ``Sub-Spacecraft Point''
Target MERCURY Reference frame IAU_MERCURY Observer BEPICOLOMBO MPO Sub-point type Near point: ellipsoid Light propagation No correction Time system Spacecraft clock (SCLK=-121) Time format Spacecraft clock string Input time 863834674:28127 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
17.94407694 31.52107152WGC cannot compute the direction from the BepiColombo MPO spacecraft to the sub-spacecraft point in the SERENA STROFIO +X Buffle frame. Step-6: ``Spacecraft Velocity''
Calculation type Pointing Direction Direction type Velocity Target BEPICOLOMBO MPO Observer MERCURY Reference frame J2000 Light propagation No correction Use anti-vector No Time system Spacecraft clock (SCLK=-121) Time format Spacecraft clock string Input time 863834674:28127 Reference frame MPO_SERENA_STROFIO+X Vector magnitude Unit Coordinate system RectangularWGC will return the following unit vector along the velocity direction, deg:
0.10574453 9.33475590E-06 0.99439333 ``Mars Express Geometric Event Finding'' Hands-On Lesson Using WGCKernels Used
Make sure to unload the ``Ground Stations Kernels'' kernel set if it is pre-loaded by default as this kernel set contains a duplicate definition of the ``DSS-14_TOPO'' frame that may trigger a SPICE error if loaded together with the lesson kernel set. Find View Periods
Target MEX Observer DSS-14 Reference frame DSS-14_TOPO Light propagation To observer Light-time algorithm Converged Newtonian Stellar aberration Corrected for stellar aberration Time system TDB Time format Calendar date and time Time range 2004 MAY 2 to 2004 MAY 6 Step 300 seconds Coordinate system Planetocentric Coordinate condition Latitude is greater than 6 Output time unit hours Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following interval start and stop times:
2004-05-02 00:00:00.000000 TDB 2004-05-02 05:35:03.096376 TDB 2004-05-02 16:09:14.078641 TDB 2004-05-03 05:33:57.257816 TDB 2004-05-03 16:08:02.279561 TDB 2004-05-04 05:32:50.765340 TDB 2004-05-04 16:06:51.259358 TDB 2004-05-05 05:31:43.600189 TDB 2004-05-05 16:05:40.994061 TDB 2004-05-06 00:00:00.000000 TDBMake sure to save these output intervals in the WGC ``Saved Values'' area using the ``Save All Intervals'' button to make them available for use as input to the next step of the lesson. Find Times when Target is Visible
Occultation type Any Front body MARS Front body shape Ellipsoid Front body frame IAU_MARS Back body MEX Back body shape Point Back body frame Observer DSS-14 Light propagation To observer Light-time algorithm Converged Newtonian Time system TDB Time format Calendar date and time Time windows ["2004-05-02 00:00:00.... Step 300 seconds Output time unit hours Complement result window yes Result interval adjustment No adjustment Result interval filtering No filteringTo use the time intervals found by the previous step as the input to this calculation, select ``List of Intervals'' in the ``Input times:'' selector and drag and drop saved intervals from the ``Saved Values'' area into the empty ``List of intervals:'' box. WGC will return the following interval start and stop times:
2004-05-02 00:00:00.000000 TDB 2004-05-02 04:49:30.827635 TDB 2004-05-02 16:09:14.078641 TDB 2004-05-02 20:00:22.514122 TDB 2004-05-02 21:01:38.222068 TDB 2004-05-03 03:35:42.256777 TDB 2004-05-03 04:36:42.484694 TDB 2004-05-03 05:33:57.257816 TDB 2004-05-03 16:08:02.279561 TDB 2004-05-03 18:46:26.013964 TDB 2004-05-03 19:46:54.618795 TDB 2004-05-04 02:21:44.562990 TDB 2004-05-04 03:21:56.347988 TDB 2004-05-04 05:32:50.765340 TDB 2004-05-04 16:06:51.259358 TDB 2004-05-04 17:32:25.809031 TDB 2004-05-04 18:32:05.975318 TDB 2004-05-05 01:07:48.264966 TDB 2004-05-05 02:07:11.601765 TDB 2004-05-05 05:31:43.600189 TDB 2004-05-05 16:05:40.994061 TDB 2004-05-05 16:18:35.560693 TDB 2004-05-05 17:17:27.717224 TDB 2004-05-05 23:54:04.672052 TDBTo find the set of time intervals when the Mars Express Orbiter (MEX) spacecraft is visible from the DSN station DSS-14 and is not occulted by Mars modeled using a DSK shape model, specify/select the following inputs in the ``Occultation Event Finder'' calculation:
Occultation type Any Front body MARS Front body shape DSK model Front body frame IAU_MARS Back body MEX Back body shape Point Observer DSS-14 Light propagation To observer Light-time algorithm Converged Newtonian Time system TDB Time format Calendar date and time Time windows ["2004-05-02 00:00:00.... Step 300 seconds Output time unit hours Complement result window yes Result interval adjustment No adjustment Result interval filtering No filteringTo use the time intervals found by the previous step as the input to this calculation, select ``List of Intervals'' in the ``Input times:'' selector and drag and drop saved intervals from the ``Saved Values'' area into the empty ``List of intervals:'' box. WGC will return the following interval start and stop times:
2004-05-02 00:00:00.000000 TDB 2004-05-02 04:49:32.645582 TDB 2004-05-02 16:09:14.078641 TDB 2004-05-02 20:00:23.980386 TDB 2004-05-02 21:01:43.206810 TDB 2004-05-03 03:35:44.140275 TDB 2004-05-03 04:36:46.868950 TDB 2004-05-03 05:33:57.257816 TDB 2004-05-03 16:08:02.279561 TDB 2004-05-03 18:46:27.306582 TDB 2004-05-03 19:46:59.734382 TDB 2004-05-04 02:21:46.574959 TDB 2004-05-04 03:22:00.862241 TDB 2004-05-04 05:32:50.765340 TDB 2004-05-04 16:06:51.259358 TDB 2004-05-04 17:32:27.118804 TDB 2004-05-04 18:32:11.057061 TDB 2004-05-05 01:07:50.061373 TDB 2004-05-05 02:07:16.253201 TDB 2004-05-05 05:31:43.600189 TDB 2004-05-05 16:05:40.994061 TDB 2004-05-05 16:18:36.994871 TDB 2004-05-05 17:17:32.385773 TDB 2004-05-05 23:54:06.221724 TDB Extra Credit
Target MARS EXPRESS Observer MARS Reference frame IAU_MARS Light propagation No correction Time system TDB Time format Calendar date and time Time range 2004 MAY 02 to 2004 MAY 06 Step 300 seconds Coordinate system Planetocentric Coordinate condition Latitude equals 0 Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2004-05-02 05:00:08.334792 TDB 2004-05-02 06:15:13.074957 TDB 2004-05-02 12:35:14.856242 TDB 2004-05-02 13:50:09.161841 TDB 2004-05-02 20:10:24.439170 TDB 2004-05-02 21:25:10.344246 TDB 2004-05-03 03:45:26.758446 TDB 2004-05-03 05:00:04.086901 TDB 2004-05-03 11:20:32.419618 TDB 2004-05-03 12:34:57.968562 TDB 2004-05-03 18:55:34.883629 TDB 2004-05-03 20:09:53.063063 TDB 2004-05-04 02:30:35.509603 TDB 2004-05-04 03:44:42.753445 TDB 2004-05-04 10:05:41.638033 TDB 2004-05-04 11:19:38.397433 TDB 2004-05-04 17:40:41.405725 TDB 2004-05-04 18:54:31.413477 TDB 2004-05-05 01:15:45.967991 TDB 2004-05-05 02:29:25.294886 TDB 2004-05-05 08:50:53.931352 TDB 2004-05-05 10:04:26.915886 TDB 2004-05-05 16:25:58.350272 TDB 2004-05-05 17:39:23.889937 TDB2. To find times when Mars Express orbiter (MEX) is at periapsis, specify/select the following inputs in the ``Distance Event Finder'' calculation:
Target MARS EXPRESS Observer MARS Light propagation No correction Time system TDB Time format Calendar date and time Time range 2004 MAY 02 to 2004 MAY 06 Step 300 seconds Coordinate condition Distance is local minimum Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2004-05-02 05:57:51.000411 TDB 2004-05-02 13:32:43.325958 TDB 2004-05-02 21:07:41.124293 TDB 2004-05-03 04:42:30.648154 TDB 2004-05-03 12:17:21.143198 TDB 2004-05-03 19:52:12.267643 TDB 2004-05-04 03:26:57.755816 TDB 2004-05-04 11:01:49.826895 TDB 2004-05-04 18:36:38.448012 TDB 2004-05-05 02:11:28.558226 TDB 2004-05-05 09:46:26.309109 TDB 2004-05-05 17:21:18.875493 TDB3. To find times when Mars Express orbiter (MEX) is at apoapsis, specify/select the following inputs in the ``Distance Event Finder'' calculation:
Target MARS EXPRESS Observer MARS Light propagation No correction Time system TDB Time format Calendar date and time Time range 2004 MAY 02 to 2004 MAY 06 Step 300 seconds Coordinate condition Distance is local maximum Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2004-05-02 02:10:24.948283 TDB 2004-05-02 09:45:19.189323 TDB 2004-05-02 17:20:14.194854 TDB 2004-05-03 00:55:07.633360 TDB 2004-05-03 08:29:57.890652 TDB 2004-05-03 16:04:48.524492 TDB 2004-05-03 23:39:36.745574 TDB 2004-05-04 07:14:25.662870 TDB 2004-05-04 14:49:15.904704 TDB 2004-05-04 22:24:05.351784 TDB 2004-05-05 05:58:59.270665 TDB 2004-05-05 13:33:54.433201 TDB 2004-05-05 21:08:50.211003 TDB ``ExoMars-16 TGO Geometric Event Finding'' Hands-On Lesson Using WGCKernels Used
Find View Periods
Target EXOMARS 2016 TGO Observer NEW_NORCIA Reference frame NEW_NORCIA_TOPO Light propagation To observer Light-time algorithm Converged Newtonian Stellar aberration Corrected for stellar aberration Time system TDB Time format Calendar date and time Time range 2018 JUN 10 to 2018 JUN 14 Step 300 seconds Coordinate system Planetocentric Coordinate condition Latitude is greater than 6 Output time unit hours Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following interval start and stop times:
2018-06-10 00:00:00.000000 TDB 2018-06-10 02:11:17.355621 TDB 2018-06-10 13:19:58.777464 TDB 2018-06-11 02:08:16.008548 TDB 2018-06-11 13:16:50.542539 TDB 2018-06-12 02:05:12.548825 TDB 2018-06-12 13:13:38.573032 TDB 2018-06-13 02:02:06.618874 TDB 2018-06-13 13:10:23.432464 TDB 2018-06-14 00:00:00.000000 TDBMake sure to save these output intervals in the WGC ``Saved Values'' area using the ``Save All Intervals'' button to make them available for use as input to the next step of the lesson. Find Times when Target is Visible
Occultation type Any Front body MARS Front body shape Ellipsoid Front body frame IAU_MARS Back body EXOMARS 2016 TGO Back body shape Point Observer NEW_NORCIA Light propagation To observer Light-time algorithm Converged Newtonian Time system TDB Time format Calendar date and time Time windows ["2018-06-10 00:00:00.... Step 300 seconds Output time unit hours Complement result window yes Result interval adjustment No adjustment Result interval filtering No filteringTo use the time intervals found by the previous step as the input to this calculation, select ``List of Intervals'' in the ``Input times:'' selector and drag and drop saved intervals from the ``Saved Values'' area into the empty ``List of intervals:'' box. WGC will return the following interval start and stop times:
2018-06-10 00:00:00.000000 TDB 2018-06-10 01:00:30.640614 TDB 2018-06-10 01:41:03.610048 TDB 2018-06-10 02:11:17.355621 TDB 2018-06-10 13:28:28.785788 TDB 2018-06-10 14:45:38.197853 TDB 2018-06-10 15:26:21.981505 TDB 2018-06-10 16:43:32.192863 TDB 2018-06-10 17:24:17.290058 TDB 2018-06-10 18:41:27.535612 TDB 2018-06-10 19:22:13.628023 TDB 2018-06-10 20:39:21.785693 TDB 2018-06-10 21:20:08.856427 TDB 2018-06-10 22:37:12.445420 TDB 2018-06-10 23:18:00.834325 TDB 2018-06-11 00:35:01.034340 TDB 2018-06-11 01:15:50.883961 TDB 2018-06-11 02:08:16.008548 TDB 2018-06-11 13:16:50.542539 TDB 2018-06-11 14:20:09.789544 TDB 2018-06-11 15:01:08.370780 TDB 2018-06-11 16:18:03.385855 TDB 2018-06-11 16:59:03.014503 TDB 2018-06-11 18:15:58.739454 TDB 2018-06-11 18:56:59.199542 TDB 2018-06-11 20:13:54.308303 TDB 2018-06-11 20:54:55.301168 TDB 2018-06-11 22:11:47.045226 TDB 2018-06-11 22:52:48.925002 TDB 2018-06-12 00:09:35.868266 TDB 2018-06-12 00:50:39.046685 TDB 2018-06-12 02:05:12.548825 TDB 2018-06-12 13:13:38.573032 TDB 2018-06-12 13:54:43.524958 TDB 2018-06-12 14:35:54.054008 TDB 2018-06-12 15:52:36.256662 TDB 2018-06-12 16:33:47.502777 TDB 2018-06-12 17:50:30.988537 TDB 2018-06-12 18:31:42.896589 TDB 2018-06-12 19:48:26.827964 TDB 2018-06-12 20:29:39.039169 TDB 2018-06-12 21:46:20.933464 TDB 2018-06-12 22:27:33.596215 TDB 2018-06-12 23:44:11.473471 TDB 2018-06-13 00:25:24.992296 TDB 2018-06-13 01:42:00.777360 TDB 2018-06-13 13:10:23.432464 TDB 2018-06-13 13:29:19.789157 TDB 2018-06-13 14:10:38.985039 TDB 2018-06-13 15:27:11.882834 TDB 2018-06-13 16:08:31.566611 TDB 2018-06-13 17:25:06.068241 TDB 2018-06-13 18:06:26.219824 TDB 2018-06-13 19:23:01.820444 TDB 2018-06-13 20:04:22.175372 TDB 2018-06-13 21:20:57.296111 TDB 2018-06-13 22:02:17.650959 TDB 2018-06-13 23:18:49.624491 TDBTo find the set of time intervals when the ExoMars-16 TGO Orbiter (TGO) spacecraft is visible from the ESA station NEW_NORCIA and and is not occulted by Mars modeled using a DSK shape model, specify/select the following inputs in the ``Occultation Event Finder'' calculation:
Occultation type Any Front body MARS Front body shape DSK model Front body frame IAU_MARS Back body EXOMARS 2016 TGO Back body shape Point Observer NEW_NORCIA Light propagation To observer Light-time algorithm Converged Newtonian Time system TDB Time format Calendar date and time Time windows ["2018-06-10 00:00:00.... Step 300 seconds Output time unit hours Complement result window yes Result interval adjustment No adjustment Result interval filtering No filteringTo use the time intervals found by the previous step as the input to this calculation, select ``List of Intervals'' in the ``Input times:'' selector and drag and drop saved intervals from the ``Saved Values'' area into the empty ``List of intervals:'' box. WGC will return the following interval start and stop times:
2018-06-10 00:00:00.000000 TDB 2018-06-10 01:00:28.220807 TDB 2018-06-10 01:41:01.646917 TDB 2018-06-10 02:11:17.355621 TDB 2018-06-10 13:28:26.224303 TDB 2018-06-10 14:45:35.493195 TDB 2018-06-10 15:26:19.616482 TDB 2018-06-10 16:43:28.927026 TDB 2018-06-10 17:24:15.708129 TDB 2018-06-10 18:41:24.797353 TDB 2018-06-10 19:22:12.239603 TDB 2018-06-10 20:39:19.310010 TDB 2018-06-10 21:20:07.177145 TDB 2018-06-10 22:37:09.488415 TDB 2018-06-10 23:17:58.789177 TDB 2018-06-11 00:34:58.698530 TDB 2018-06-11 01:15:48.932135 TDB 2018-06-11 02:08:16.008548 TDB 2018-06-11 13:16:50.542539 TDB 2018-06-11 14:20:07.002550 TDB 2018-06-11 15:01:05.889750 TDB 2018-06-11 16:18:00.245245 TDB 2018-06-11 16:59:00.815555 TDB 2018-06-11 18:15:55.713823 TDB 2018-06-11 18:56:57.742755 TDB 2018-06-11 20:13:51.980832 TDB 2018-06-11 20:54:53.740948 TDB 2018-06-11 22:11:44.029460 TDB 2018-06-11 22:52:47.021765 TDB 2018-06-12 00:09:33.513615 TDB 2018-06-12 00:50:37.057576 TDB 2018-06-12 02:05:12.548825 TDB 2018-06-12 13:13:38.573032 TDB 2018-06-12 13:54:41.265138 TDB 2018-06-12 14:35:51.639820 TDB 2018-06-12 15:52:34.091993 TDB 2018-06-12 16:33:45.105220 TDB 2018-06-12 17:50:29.020626 TDB 2018-06-12 18:31:41.100405 TDB 2018-06-12 19:48:23.878666 TDB 2018-06-12 20:29:37.591528 TDB 2018-06-12 21:46:18.430557 TDB 2018-06-12 22:27:31.911087 TDB 2018-06-12 23:44:08.681952 TDB 2018-06-13 00:25:22.967320 TDB 2018-06-13 01:41:58.417366 TDB 2018-06-13 13:10:23.432464 TDB 2018-06-13 13:29:18.021452 TDB 2018-06-13 14:10:36.866862 TDB 2018-06-13 15:27:09.686654 TDB 2018-06-13 16:08:29.188852 TDB 2018-06-13 17:25:04.013047 TDB 2018-06-13 18:06:23.940576 TDB 2018-06-13 19:22:59.754402 TDB 2018-06-13 20:04:20.668606 TDB 2018-06-13 21:20:54.998971 TDB 2018-06-13 22:02:16.162693 TDB 2018-06-13 23:18:47.458050 TDB Extra Credit
Target EXOMARS 2016 TGO Observer MARS Reference frame IAU_MARS Light propagation No correction Time system TDB Time format Calendar date and time Time range 2018 JUN 10 to 2018 JUN 11 Step 300 seconds Coordinate system Planetocentric Coordinate condition Latitude equals 0 Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2018-06-10 00:14:08.836580 TDB 2018-06-10 01:12:34.582095 TDB 2018-06-10 02:12:00.375370 TDB 2018-06-10 03:10:28.808573 TDB 2018-06-10 04:09:53.955311 TDB 2018-06-10 05:08:23.919392 TDB 2018-06-10 06:07:48.630669 TDB 2018-06-10 07:06:17.539430 TDB 2018-06-10 08:05:42.659963 TDB 2018-06-10 09:04:09.120521 TDB 2018-06-10 10:03:34.270188 TDB 2018-06-10 11:01:59.269625 TDB 2018-06-10 12:01:22.866520 TDB 2018-06-10 12:59:49.352117 TDB 2018-06-10 13:59:13.289772 TDB 2018-06-10 14:57:41.242004 TDB 2018-06-10 15:57:07.576976 TDB 2018-06-10 16:55:35.266038 TDB 2018-06-10 17:55:02.773235 TDB 2018-06-10 18:53:30.271499 TDB 2018-06-10 19:52:56.383285 TDB 2018-06-10 20:51:23.966229 TDB 2018-06-10 21:50:47.729319 TDB 2018-06-10 22:49:14.385397 TDB 2018-06-10 23:48:37.583974 TDB2. To find times when ExoMars-16 TGO (TGO) is at periapsis, specify/select the following inputs in the ``Distance Event Finder'' calculation:
Target EXOMARS 2016 TGO Observer MARS Light propagation No correction Time system TDB Time format Calendar date and time Time range 2018 JUN 10 to 2018 JUN 11 Step 300 seconds Coordinate condition Distance is local minimum Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2018-06-10 00:43:06.357819 TDB 2018-06-10 02:40:47.168872 TDB 2018-06-10 04:38:45.496250 TDB 2018-06-10 06:36:32.706773 TDB 2018-06-10 08:34:10.548681 TDB 2018-06-10 10:31:49.108636 TDB 2018-06-10 12:29:20.342207 TDB 2018-06-10 14:27:07.089996 TDB 2018-06-10 16:25:36.081463 TDB 2018-06-10 18:24:02.653942 TDB 2018-06-10 20:22:23.184793 TDB 2018-06-10 22:20:12.453735 TDB3. To find times when ExoMars-16 TGO (TGO) is at apoapsis, specify/select the following inputs in the ``Distance Event Finder'' calculation:
Target EXOMARS 2016 TGO Observer MARS Light propagation No correction Time system TDB Time format Calendar date and time Time range 2018 JUN 10 to 2018 JUN 11 Step 300 seconds Coordinate condition Distance is local maximum Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2018-06-10 01:41:44.632145 TDB 2018-06-10 03:39:31.106999 TDB 2018-06-10 05:37:22.115251 TDB 2018-06-10 07:34:59.674318 TDB 2018-06-10 09:32:25.708394 TDB 2018-06-10 11:29:47.945538 TDB 2018-06-10 13:27:30.200636 TDB 2018-06-10 15:26:02.524463 TDB 2018-06-10 17:24:37.842993 TDB 2018-06-10 19:23:11.265220 TDB 2018-06-10 21:21:13.530306 TDB 2018-06-10 23:18:56.796575 TDB ``KPLO Geometric Event Finding'' Hands-On Lesson Using WGCKernels Used
Find View Periods
Target KOREA PATHFINDER LUNAR ORBITER Observer KDSA Reference frame KDSA_TOPO Light propagation To observer Light-time algorithm Converged Newtonian Stellar aberration Corrected for stellar aberration Time system TDB Time format Calendar date and time Time range 2021 JAN 02 to 2021 JAN 04 TDB Step 300 seconds Coordinate system Planetocentric Coordinate condition Latitude is greater than 6 Output time unit hours Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following interval start and stop times:
2021-01-02 00:00:00.000000 TDB 2021-01-02 00:29:04.809104 TDB 2021-01-02 12:09:44.219078 TDB 2021-01-03 01:06:51.294946 TDB 2021-01-03 13:14:11.953416 TDB 2021-01-04 00:00:00.000000 TDBMake sure to save these output intervals in the WGC ``Saved Values'' area using the ``Save All Intervals'' button to make them available for use as input to the next step of the lesson. Find Times when Target is Visible
Occultation type Any Front body MOON Front body shape Ellipsoid Front body frame MOON_ME Back body KOREA PATHFINDER LUNAR ORBITER Back body shape Point Observer KDSA Light propagation To observer Light-time algorithm Converged Newtonian Time system TDB Time format Calendar date and time Time windows ["2021-01-02 00:00:00... Step 300 seconds Output time unit hours Complement result window yes Result interval adjustment No adjustment Result interval filtering No filteringTo use the time intervals found by the previous step as the input to this calculation, select ``List of Intervals'' in the ``Input times:'' selector and drag and drop saved intervals from the ``Saved Values'' area into the empty ``List of intervals:'' box. WGC will return the following interval start and stop times:
2021-01-02 00:00:00.000000 TDB 2021-01-02 00:10:09.889149 TDB 2021-01-02 12:40:16.709927 TDB 2021-01-02 13:53:22.951804 TDB 2021-01-02 14:38:06.490360 TDB 2021-01-02 15:51:01.342268 TDB 2021-01-02 16:35:53.098803 TDB 2021-01-02 17:48:38.156533 TDB 2021-01-02 18:33:36.932715 TDB 2021-01-02 19:46:13.245471 TDB 2021-01-02 20:31:18.977103 TDB 2021-01-02 21:43:47.009069 TDB 2021-01-02 22:29:00.574638 TDB 2021-01-02 23:41:20.248180 TDB 2021-01-03 00:26:43.022041 TDB 2021-01-03 01:06:51.294946 TDB 2021-01-03 13:14:11.953416 TDB 2021-01-03 13:24:44.929522 TDB 2021-01-03 14:11:13.658468 TDB 2021-01-03 15:22:24.978150 TDB 2021-01-03 16:08:57.996438 TDB 2021-01-03 17:20:04.038775 TDB 2021-01-03 18:06:40.377391 TDB 2021-01-03 19:17:42.133447 TDB 2021-01-03 20:04:21.409086 TDB 2021-01-03 21:15:19.693724 TDB 2021-01-03 22:02:02.068830 TDB 2021-01-03 23:12:57.440831 TDB 2021-01-03 23:59:43.429772 TDB 2021-01-04 00:00:00.000000 TDBTo find the set of time intervals when the KPLO Orbiter spacecraft is visible from the KARI station KDSA and and is not occulted by Moon modeled using a DSK shape model, specify/select the following inputs in the ``Occultation Event Finder'' calculation:
Occultation type Any Front body MOON Front body shape DSK model Front body frame MOON_ME Back body KOREA PATHFINDER LUNAR ORBITER Back body shape Point Observer KDSA Light propagation To observer Light-time algorithm Converged Newtonian Time system TDB Time format Calendar date and time Time windows ["2021-01-02 00:00:00... Step 300 seconds Output time unit hours Complement result window yes Result interval adjustment No adjustment Result interval filtering No filteringTo use the time intervals found by the previous step as the input to this calculation, select ``List of Intervals'' in the ``Input times:'' selector and drag and drop saved intervals from the ``Saved Values'' area into the empty ``List of intervals:'' box. WGC will return the following interval start and stop times:
2021-01-02 00:00:00.000000 TDB 2021-01-02 00:10:08.006832 TDB 2021-01-02 12:40:16.852087 TDB 2021-01-02 13:53:27.473483 TDB 2021-01-02 14:38:06.251356 TDB 2021-01-02 15:51:03.685211 TDB 2021-01-02 16:35:52.094231 TDB 2021-01-02 17:48:37.725860 TDB 2021-01-02 18:33:36.119642 TDB 2021-01-02 19:46:15.165413 TDB 2021-01-02 20:31:18.110644 TDB 2021-01-02 21:43:51.889714 TDB 2021-01-02 22:28:59.525035 TDB 2021-01-02 23:41:26.087095 TDB 2021-01-03 00:26:41.518075 TDB 2021-01-03 01:06:51.294946 TDB 2021-01-03 13:14:11.953416 TDB 2021-01-03 13:24:47.451517 TDB 2021-01-03 14:11:12.626333 TDB 2021-01-03 15:22:28.682591 TDB 2021-01-03 16:08:56.940982 TDB 2021-01-03 17:20:08.465709 TDB 2021-01-03 18:06:39.012820 TDB 2021-01-03 19:17:46.193336 TDB 2021-01-03 20:04:20.411973 TDB 2021-01-03 21:15:23.606861 TDB 2021-01-03 22:02:01.131969 TDB 2021-01-03 23:12:59.851984 TDB 2021-01-03 23:59:42.474125 TDB 2021-01-04 00:00:00.000000 TDB Extra Credit
Target KOREA PATHFINDER LUNAR ORBITER Observer MOON Reference frame MOON_ME Light propagation No correction Time system TDB Time format Calendar date and time Time range 2021 JAN 02 to 2021 JAN 03 Step 300 seconds Coordinate system Planetocentric Coordinate condition Latitude equals 0 Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2021-01-02 00:29:09.291260 TDB 2021-01-02 01:28:07.739313 TDB 2021-01-02 02:26:53.378996 TDB 2021-01-02 03:25:51.718417 TDB 2021-01-02 04:24:37.370435 TDB 2021-01-02 05:23:35.637643 TDB 2021-01-02 06:22:21.229758 TDB 2021-01-02 07:21:19.488355 TDB 2021-01-02 08:20:04.908620 TDB 2021-01-02 09:19:03.268286 TDB 2021-01-02 10:17:48.394045 TDB 2021-01-02 11:16:46.997406 TDB 2021-01-02 12:15:31.710021 TDB 2021-01-02 13:14:30.717714 TDB 2021-01-02 14:13:14.874535 TDB 2021-01-02 15:12:14.473830 TDB 2021-01-02 16:10:57.866823 TDB 2021-01-02 17:09:58.289834 TDB 2021-01-02 18:08:40.644274 TDB 2021-01-02 19:07:42.160572 TDB 2021-01-02 20:06:23.192173 TDB 2021-01-02 21:05:26.057974 TDB 2021-01-02 22:04:05.537612 TDB 2021-01-02 23:03:09.942854 TDB2. To find times when KPLO is at periapsis, specify/select the following inputs in the ``Distance Event Finder'' calculation:
Target KOREA PATHFINDER LUNAR ORBITER Observer MOON Light propagation No correction Time system TDB Time format Calendar date and time Time range 2021 JAN 02 to 2021 JAN 03 Step 300 seconds Coordinate condition Distance is local minimum Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2021-01-02 01:30:03.252209 TDB 2021-01-02 03:27:47.175008 TDB 2021-01-02 05:25:32.458516 TDB 2021-01-02 07:23:19.666917 TDB 2021-01-02 09:21:09.488858 TDB 2021-01-02 11:19:02.272580 TDB 2021-01-02 13:16:58.197678 TDB 2021-01-02 15:14:57.534376 TDB 2021-01-02 17:13:00.573722 TDB 2021-01-02 19:11:07.149724 TDB 2021-01-02 21:09:16.134309 TDB 2021-01-02 23:07:26.025982 TDB3. To find times when KPLO is at apoapsis, specify/select the following inputs in the ``Distance Event Finder'' calculation:
Target KOREA PATHFINDER LUNAR ORBITER Observer MOON Light propagation No correction Time system TDB Time format Calendar date and time Time range 2021 JAN 02 to 2021 JAN 03 Step 300 seconds Coordinate condition Distance is local maximum Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2021-01-02 00:31:23.997068 TDB 2021-01-02 02:29:07.494822 TDB 2021-01-02 04:26:51.565647 TDB 2021-01-02 06:24:36.779707 TDB 2021-01-02 08:22:24.045804 TDB 2021-01-02 10:20:13.799654 TDB 2021-01-02 12:18:06.012411 TDB 2021-01-02 14:16:00.876052 TDB 2021-01-02 16:13:59.150197 TDB 2021-01-02 18:12:01.620695 TDB 2021-01-02 20:10:08.021442 TDB 2021-01-02 22:08:16.917912 TDB ``BepiColombo MPO Geometric Event Finding'' Hands-On Lesson Using WGCKernels Used
Find View Periods
Target BEPICOLOMBO MPO Observer NEW_NORCIA Reference frame NEW_NORCIA_TOPO Light propagation To observer Light-time algorithm Converged Newtonian Stellar aberration Corrected for stellar aberration Time system TDB Time format Calendar date and time Time range 2027 JAN 03 to 2027 JAN 06 Step 300 seconds Coordinate system Planetocentric Coordinate condition Latitude is greater than 6 Output time unit hours Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following interval start and stop times:
2027-01-03 00:00:00.000000 TDB 2027-01-03 10:58:25.063666 TDB 2027-01-03 21:55:08.488015 TDB 2027-01-04 11:01:14.279503 TDB 2027-01-04 21:58:41.333765 TDB 2027-01-05 11:04:00.020897 TDB 2027-01-05 22:02:18.477689 TDB 2027-01-06 00:00:00.000000 TDBMake sure to save these output intervals in the WGC ``Saved Values'' area using the ``Save All Intervals'' button to make them available for use as input to the next step of the lesson. Find Times when Target is Visible
Occultation type Any Front body MERCURY Front body shape Ellipsoid Front body frame IAU_MERCURY Back body BEPICOLOMBO MPO Back body shape Point Observer NEW_NORCIA Light propagation To observer Light-time algorithm Converged Newtonian Time system TDB Time format Calendar date and time Time windows ["2027-01-03 00:00:00.... Step 300 seconds Output time unit hours Complement result window yes Result interval adjustment No adjustment Result interval filtering No filteringTo use the time intervals found by the previous step as the input to this calculation, select ``List of Intervals'' in the ``Input times:'' selector and drag and drop saved intervals from the ``Saved Values'' area into the empty ``List of intervals:'' box. WGC will return the following interval start and stop times:
2027-01-03 00:00:00.000000 TDB 2027-01-03 01:28:03.419233 TDB 2027-01-03 02:00:42.993632 TDB 2027-01-03 03:49:50.750893 TDB 2027-01-03 04:22:20.803992 TDB 2027-01-03 06:11:38.050911 TDB 2027-01-03 06:43:58.528879 TDB 2027-01-03 08:33:25.499611 TDB 2027-01-03 09:05:36.070506 TDB 2027-01-03 10:55:12.991735 TDB 2027-01-03 21:55:08.488015 TDB 2027-01-03 22:44:11.490099 TDB 2027-01-03 23:15:19.552983 TDB 2027-01-04 01:05:59.339076 TDB 2027-01-04 01:36:56.572342 TDB 2027-01-04 03:27:47.253162 TDB 2027-01-04 03:58:33.411659 TDB 2027-01-04 05:49:35.238120 TDB 2027-01-04 06:20:10.165230 TDB 2027-01-04 08:11:23.310135 TDB 2027-01-04 08:41:46.813607 TDB 2027-01-04 10:33:11.480288 TDB 2027-01-04 21:58:41.333765 TDB 2027-01-04 22:22:13.911999 TDB 2027-01-04 22:51:24.368524 TDB 2027-01-05 00:44:02.576224 TDB 2027-01-05 01:13:00.256137 TDB 2027-01-05 03:05:51.406811 TDB 2027-01-05 03:34:36.025883 TDB 2027-01-05 05:27:40.260241 TDB 2027-01-05 05:56:11.727894 TDB 2027-01-05 07:49:29.298129 TDB 2027-01-05 08:17:47.213618 TDB 2027-01-05 10:11:18.377919 TDB 2027-01-05 10:39:22.574622 TDB 2027-01-05 11:04:00.020897 TDB 2027-01-05 22:27:17.183790 TDB 2027-01-06 00:00:00.000000 TDBTo find the set of time intervals when the BepiColombo MPO Orbiter (MPO) spacecraft is visible from the ESA station NEW_NORCIA and and is not occulted by MERCURY modeled using a DSK shape model, specify/select the following inputs in the ``Occultation Event Finder'' calculation:
Occultation type Any Front body MERCURY Front body shape DSK model Front body frame IAU_MERCURY Back body BEPICOLOMBO MPO Back body shape Point Observer NEW_NORCIA Light propagation To observer Light-time algorithm Converged Newtonian Time system TDB Time format Calendar date and time Time windows ["2027-01-03 00:00:00.... Step 300 seconds Output time unit hours Complement result window yes Result interval adjustment No adjustment Result interval filtering No filteringTo use the time intervals found by the previous step as the input to this calculation, select ``List of Intervals'' in the ``Input times:'' selector and drag and drop saved intervals from the ``Saved Values'' area into the empty ``List of intervals:'' box. WGC will return the following interval start and stop times:
2027-01-03 00:00:00.000000 TDB 2027-01-03 01:28:03.202274 TDB 2027-01-03 02:00:43.226282 TDB 2027-01-03 03:49:50.589325 TDB 2027-01-03 04:22:21.167426 TDB 2027-01-03 06:11:37.927914 TDB 2027-01-03 06:43:58.803080 TDB 2027-01-03 08:33:25.452286 TDB 2027-01-03 09:05:36.483005 TDB 2027-01-03 10:55:13.005765 TDB 2027-01-03 21:55:08.488015 TDB 2027-01-03 22:44:11.836443 TDB 2027-01-03 23:15:20.564990 TDB 2027-01-04 01:05:59.788947 TDB 2027-01-04 01:36:56.903679 TDB 2027-01-04 03:27:47.794713 TDB 2027-01-04 03:58:33.685170 TDB 2027-01-04 05:49:35.857104 TDB 2027-01-04 06:20:10.819543 TDB 2027-01-04 08:11:23.843362 TDB 2027-01-04 08:41:47.399395 TDB 2027-01-04 10:33:12.291393 TDB 2027-01-04 21:58:41.333765 TDB 2027-01-04 22:22:13.969382 TDB 2027-01-04 22:51:24.088513 TDB 2027-01-05 00:44:02.498240 TDB 2027-01-05 01:13:00.056223 TDB 2027-01-05 03:05:51.377268 TDB 2027-01-05 03:34:36.194296 TDB 2027-01-05 05:27:40.400567 TDB 2027-01-05 05:56:11.995943 TDB 2027-01-05 07:49:29.743608 TDB 2027-01-05 08:17:47.173986 TDB 2027-01-05 10:11:18.893303 TDB 2027-01-05 10:39:22.690895 TDB 2027-01-05 11:04:00.020897 TDB 2027-01-05 22:27:17.436008 TDB 2027-01-06 00:00:00.000000 TDB Extra Credit
Target BEPICOLOMBO MPO Observer MERCURY Reference frame IAU_MERCURY Light propagation No correction Time system TDB Time format Calendar date and time Time range 2027 JAN 03 to 2027 JAN 04 Step 300 seconds Coordinate system Planetocentric Coordinate condition Latitude equals 0 Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2027-01-03 00:21:02.744334 TDB 2027-01-03 01:34:39.885957 TDB 2027-01-03 02:42:45.780223 TDB 2027-01-03 03:56:22.917048 TDB 2027-01-03 05:04:28.849131 TDB 2027-01-03 06:18:06.007358 TDB 2027-01-03 07:26:11.888263 TDB 2027-01-03 08:39:49.081587 TDB 2027-01-03 09:47:54.901012 TDB 2027-01-03 11:01:32.084351 TDB 2027-01-03 12:09:37.930329 TDB 2027-01-03 13:23:15.135888 TDB 2027-01-03 14:31:20.939808 TDB 2027-01-03 15:44:58.128865 TDB 2027-01-03 16:53:03.959515 TDB 2027-01-03 18:06:41.171174 TDB 2027-01-03 19:14:46.962115 TDB 2027-01-03 20:28:24.150065 TDB 2027-01-03 21:36:29.935243 TDB 2027-01-03 22:50:07.114962 TDB 2027-01-03 23:58:12.944905 TDB2. To find times when BepiColombo MPO (MPO) is at periapsis, specify/select the following inputs in the ``Distance Event Finder'' calculation:
Target BEPICOLOMBO MPO Observer MERCURY Light propagation No correction Time system TDB Time format Calendar date and time Time range 2027 JAN 03 to 2027 JAN 04 Step 300 seconds Coordinate condition Distance is local minimum Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2027-01-03 00:18:33.937597 TDB 2027-01-03 02:40:16.998455 TDB 2027-01-03 05:01:59.964812 TDB 2027-01-03 07:23:43.026843 TDB 2027-01-03 09:45:25.991310 TDB 2027-01-03 12:07:09.042682 TDB 2027-01-03 14:28:52.095744 TDB 2027-01-03 16:50:35.082444 TDB 2027-01-03 19:12:18.042779 TDB 2027-01-03 21:34:01.097809 TDB 2027-01-03 23:55:44.079910 TDB3. To find times when BepiColombo MPO (MPO) is at apoapsis, specify/select the following inputs in the ``Distance Event Finder'' calculation:
Target BEPICOLOMBO MPO Observer MERCURY Light propagation No correction Time system TDB Time format Calendar date and time Time range 2027 JAN 03 to 2027 JAN 04 Step 300 seconds Coordinate condition Distance is local maximum Output time unit seconds Complement result window no Result interval adjustment No adjustment Result interval filtering No filteringWGC will return the following times:
2027-01-03 01:29:25.529845 TDB 2027-01-03 03:51:08.495185 TDB 2027-01-03 06:12:51.561811 TDB 2027-01-03 08:34:34.611548 TDB 2027-01-03 10:56:17.595681 TDB 2027-01-03 13:18:00.653133 TDB 2027-01-03 15:39:43.611529 TDB 2027-01-03 18:01:26.677944 TDB 2027-01-03 20:23:09.638216 TDB 2027-01-03 22:44:52.618672 TDB ``Binary PCK'' Hands-On Lesson Using WGCMoon rotation (mrotat)
To compute the Moon-Earth direction using the low accuracy PCK and the IAU_MOON frame, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target EARTH Observer type Object Observer MOON Reference frame IAU_MOON Light propagation To observer Light-time algorithm Converged Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2007 JAN 1 00:00:00 State representation PlanetocentricWGC will return the following longitude and latitude, deg:
3.61310222 -6.43834182To compute the Moon-Earth direction using a high accuracy PCK and the MOON_ME frame, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target EARTH Observer type Object Observer MOON Reference frame MOON_ME Light propagation To observer Light-time algorithm Converged Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2007 JAN 1 00:00:00 State representation PlanetocentricWGC will return the following longitude and latitude, deg:
3.61122841 -6.43950148WGC cannot compute angular separation between the Moon-Earth direction vectors in the IAU_MOON and MOON_ME frames. To compute the Moon-Earth direction using a high accuracy PCK and the MOON_PA frame, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target EARTH Observer type Object Observer MOON Reference frame MOON_PA Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2007 JAN 1 00:00:00 State representation PlanetocentricWGC will return the following longitude and latitude, deg:
3.59331861 -6.41758189WGC cannot compute angular separation between the Moon-Earth direction vectors in the MOON_ME and MOON_PA frames. To compute the sub-Earth point on the Moon using a high accuracy PCK and the MOON_ME frame, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target MOON Reference frame MOON_ME Observer EARTH Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Converged Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2007 JAN 1 00:00:00 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
3.61141894 -6.43950142To compute the sub-Earth point on the Moon using a high accuracy PCK and the MOON_PA frame, specify/select the following inputs in the ``Sub-Observer Point'' calculation:
Target MOON Reference frame MOON_PA Observer EARTH Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Converged Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2007 JAN 1 00:00:00 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
3.59350886 -6.41758182WGC cannot compute the distance between the sub-Earth points computed in the MOON_ME and MOON_PA frames. Earth rotation (erotat)
To compute the Earth-Moon direction using a low accuracy PCK and the IAU_EARTH frame, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target MOON Observer type Object Observer EARTH Reference frame IAU_EARTH Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2007 JAN 1 00:00:00 State representation PlanetocentricWGC will return the following longitude and latitude, deg:
-35.49627162 26.41695855To compute the Earth-Moon direction using a high accuracy PCK and the ITRF93 frame, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target MOON Observer type Object Observer EARTH Reference frame ITRF93 Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2007 JAN 1 00:00:00 State representation PlanetocentricWGC will return the following longitude and latitude, deg:
-35.55428578 26.41915557WGC cannot compute the separation angle between the Earth-Moon vectors in IAU_EARTH and ITRF93 frames. WGC cannot compute the IAU_EARTH and ITRF93 +X and +Z axis separation angles. To compute the DSS-13-Moon azimuth and elevation using a high accuracy PCK and the DSS-13_TOPO frame, specify/select the following inputs in the ``State Vector'' calculation:
Target type Object Target MOON Observer type Object Observer DSS-13 Reference frame DSS-13_TOPO Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2007 JAN 1 00:00:00 State representation PlanetocentricWGC will return the following longitude and latitude, deg, that are equivalent to the azimuth (AZ=-LON) and elevation (EL=LAT):
-72.16900637 20.68948821To compute the sub-solar point on Earth using a low accuracy PCK and the IAU_EARTH frame, specify/select the following inputs in the ``Sub-Solar Point'' calculation:
Target EARTH Reference frame IAU_EARTH Observer SUN Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2007 JAN 1 00:00:00 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
-177.10053149 -22.91037699To compute the sub-solar point on Earth using a high accuracy PCK and the ITRF93 frame, specify/select the following inputs in the ``Sub-Solar Point'' calculation:
Target EARTH Reference frame ITRF93 Observer SUN Sub-point type Near point: ellipsoid Light propagation To observer Light-time algorithm Newtonian Stellar aberration Corrected for stellar aberration Time system UTC Time format Calendar date and time Input time 2007 JAN 1 00:00:00 Position representation PlanetocentricWGC will return the following longitude and latitude, deg:
-177.15787351 -22.91259307WGC cannot compute the distance between the sub-solar points computed in the IAU_EARTH and ITRF93 frames.
|