KPL/IK Juno JEDI Instrument Kernel =============================================================================== This Instrument Kernel (IK) file contains parameters and FOV definitions for the JUNO Jupiter Energetic-particles Detector Instrument (JEDI) sensors. Version and Date ------------------------------------------------------------------------------- Version 0.0.1 -- May 22, 2017 -- Lillian Nguyen, JHU/APL Updated the comments. Version 0.0.1 -- July 15, 2013 -- Lillian Nguyen, JHU/APL Modified the field of view to use 6 polygons instead of 4 to represent the fan-shape. Included the sun-avoidance block in the JEDI-A180 field of view, such that its azimuth is 160 instead of 148 degrees. Added coordinate view directions and text. Version 0.0 -- June 8, 2009 -- Boris Semenov, NAIF Initial Release. References ------------------------------------------------------------------------------- 1. Kernel Pool Required Reading 2. GETFOV, getfoc_c, cspice_getfov headers 3. JUNO FK file, latest version 4. JEDI CDR Presentations 5. Table 1, JEDI coordinate view directions, in file JEDI_viewing_orientation_03Jul13.doc, received from Barry Mauk 7/3/2013. 6. INSTRUMENT.CAT Rev 1, 2016-06-01 Contact Information ------------------------------------------------------------------------------- Lillian Nguyen, JHU/APL (443) 778-5477, Lillian.Nguyen@jhuapl.edu Boris V. Semenov, NAIF/JPL, (818)-354-8136, Boris.Semenov@jpl.nasa.gov Implementation Notes ------------------------------------------------------------------------------- This file is used by the SPICE system as follows: programs that make use of this kernel must ``load'' the kernel, normally during program initialization. The SPICE routine FURNSH loads a kernel file into the pool as shown below. CALL FURNSH ( 'frame_kernel_name; ) -- FORTRAN furnsh_c ( "frame_kernel_name" ); -- C cspice_furnsh, frame_kernel_name -- IDL cspice_furnsh( 'frame_kernel_name' ) -- MATLAB Once the file has been loaded, the SPICE routine GETFOV (getfov_c in C, cspice_getfov in IDL and MATLAB) can be used to retrieve FOV parameters for a given instrument or structure. This file was created and may be updated with a text editor or word processor. Naming Conventions ---------------------------------------------------------- All names referencing values in this IK file start with the characters `INS' followed by the NAIF JUNO spacecraft ID number (-61) followed by a NAIF three digit ID code for one of the JEDI sensors. This is the full list of names and IDs for the JEDI sensors described by this IK file: JUNO_JEDI_090 -61301 JUNO_JEDI_A180 -61302 JUNO_JEDI_270 -61303 The remainder of the keyword name is an underscore character followed by the unique name of the data item. For example, the JEDI/090 boresight direction in the JUNO_JEDI_090 frame is specified by: INS-61301_BORESIGHT The upper bound on the length of the name of any data item is 32 characters. If the same item is included in more than one file, or if the same item appears more than once within a single file, the latest value supersedes any earlier values. Instrument Description --------------------------------------------------------- From [6]: The JEDI system covers the energy range of 25 keV to > 500 keV for electrons, and 10 keV/nucleon to ~20 MeV total energy for ions. JEDI determines the distributions of the high-energy magnetospheric ions and electrons, including the composition of ions. It does this by measuring the energy and velocity of the particles and then using a look-up table to determine the mass and therefore the species of particle. The measured species for JEDI include electrons and ions (H, He, O, S). Rapid spacecraft motions and slow spacecraft rotation require that JEDI simultaneously and continuously resolve both magnetic loss cones at every position inside of ~ 3 RJ. JEDI uses 2 individual instruments (JEDI-90 and JEDI-270), each with multiple views that continuously sample within a 360 degree plane roughly normal to the spacecraft spin axis. All sky coverage is additionally achieved every spin with an additional sensor (JEDI-A180) that views coplanar to the spin axis. Each JEDI sensor consists of a 60 mm diameter, hockey-puck-like cylinder, in which a start foil and stop foil, wrapped around opposite curved sides of the cylinder, constitute the time-of-flight chamber. An incoming energetic ion will pass through the collimator and a passive thin foil designed to keep the cold plasma out of the instrument. Then the ion passes through the start foil generating forward-scattered electrons that are then focused towards a microchannel plate. The ion will continue through the chamber to the stop foil, generating backscattered electrons, also accumulated on the MCP. The ion will then pass into a solid-state detector, providing the third component of the measurement. Since the time-of-flight (TOF) can be computed from the start and stop signals and the chamber size is known, the particle speed can be obtained. The velocity coupled with the energy yields the ion species. For ions that fall below the discrimination level of the solid-state detectors, a heavy vs. light determination can be made with the TOF and the anode pulse height. The detectors are arranged so that each detector senses the events within a given range of incidence angles. One of the JEDI sensors also contains witness detectors. Each of the six detector modules is composed of four pixels: large and small ion and large and small electron. The electron detectors differ from the ion detectors in that they add a layer of aluminum, which excludes low-energy ions. Each electron and ion detector is split into a small pixel and a large pixel; the large pixel has 20 times the area of the small pixel. This provides 24 detector elements. Mounting Alignment -------------------------------------------------------- Refer to the latest version of the Juno Frames Definition Kernel (FK) [3] for the JEDI reference frame definitions and mounting alignment information. JEDI Sensor FOVs ---------------------------------------------------------- The JEDI Sensor FOVs are defined as polygonal pyramids using 14 boundary vectors to represent the +/-80 degree azimuth, +/-6 degree elevation FOVs shown in [4], using 160/6 degree azimuthal step. The boresight is along +X of the corresponding JUNO_JEDI_* frame. \begindata INS-61301_FOV_FRAME = 'JUNO_JEDI_090' INS-61301_FOV_SHAPE = 'POLYGON' INS-61301_BORESIGHT = ( 1.0, 0.0, 0.0 ) INS-61301_FOV_BOUNDARY_CORNERS = ( 0.172696914780562 -0.979412873099071 -0.104528463267653 0.593887294455704 -0.797729077977597 -0.104528463267653 0.888737227217394 -0.446340611332691 -0.104528463267653 0.994521895368273 -0.000000000000000 -0.104528463267653 0.888737227217394 0.446340611332691 -0.104528463267653 0.593887294455704 0.797729077977597 -0.104528463267653 0.172696914780562 0.979412873099071 -0.104528463267653 0.172696914780562 0.979412873099071 0.104528463267653 0.593887294455704 0.797729077977597 0.104528463267653 0.888737227217394 0.446340611332691 0.104528463267653 0.994521895368273 -0.000000000000000 0.104528463267653 0.888737227217394 -0.446340611332691 0.104528463267653 0.593887294455704 -0.797729077977597 0.104528463267653 0.172696914780562 -0.979412873099071 0.104528463267653 ) INS-61302_FOV_FRAME = 'JUNO_JEDI_A180' INS-61302_FOV_SHAPE = 'POLYGON' INS-61302_BORESIGHT = ( 1.0, 0.0, 0.0 ) INS-61302_FOV_BOUNDARY_CORNERS = ( 0.172696914780562 -0.979412873099071 -0.104528463267653 0.593887294455704 -0.797729077977597 -0.104528463267653 0.888737227217394 -0.446340611332691 -0.104528463267653 0.994521895368273 -0.000000000000000 -0.104528463267653 0.888737227217394 0.446340611332691 -0.104528463267653 0.593887294455704 0.797729077977597 -0.104528463267653 0.172696914780562 0.979412873099071 -0.104528463267653 0.172696914780562 0.979412873099071 0.104528463267653 0.593887294455704 0.797729077977597 0.104528463267653 0.888737227217394 0.446340611332691 0.104528463267653 0.994521895368273 -0.000000000000000 0.104528463267653 0.888737227217394 -0.446340611332691 0.104528463267653 0.593887294455704 -0.797729077977597 0.104528463267653 0.172696914780562 -0.979412873099071 0.104528463267653 ) INS-61303_FOV_FRAME = 'JUNO_JEDI_270' INS-61303_FOV_SHAPE = 'POLYGON' INS-61303_BORESIGHT = ( 1.0, 0.0, 0.0 ) INS-61303_FOV_BOUNDARY_CORNERS = ( 0.172696914780562 -0.979412873099071 -0.104528463267653 0.593887294455704 -0.797729077977597 -0.104528463267653 0.888737227217394 -0.446340611332691 -0.104528463267653 0.994521895368273 -0.000000000000000 -0.104528463267653 0.888737227217394 0.446340611332691 -0.104528463267653 0.593887294455704 0.797729077977597 -0.104528463267653 0.172696914780562 0.979412873099071 -0.104528463267653 0.172696914780562 0.979412873099071 0.104528463267653 0.593887294455704 0.797729077977597 0.104528463267653 0.888737227217394 0.446340611332691 0.104528463267653 0.994521895368273 -0.000000000000000 0.104528463267653 0.888737227217394 -0.446340611332691 0.104528463267653 0.593887294455704 -0.797729077977597 0.104528463267653 0.172696914780562 -0.979412873099071 0.104528463267653 ) \begintext JEDI Coordinate View Directions ---------------------------------------------------------- [5] gives the central direction of each TOFxPH, Ion-SSD, and Electron-SSD pixel as an angle from the X-axis within the X-Y plane, with positive angles towards the -Y axis (also toward the direction that has been designated the "V0" direction). The centroids are given here for each of the three JEDI instruments in its reference frame -- 'JUNO_JEDI_090', 'JUNO_JEDI_A180', or 'JUNO_JEDI_270'. \begindata INS-61301_TOFxPH_V0_CENTROID = ( 0.39635 -0.91810 0.00000 ) INS-61301_TOFxPH_V1_CENTROID = ( 0.76571 -0.64319 0.00000 ) INS-61301_TOFxPH_V2_CENTROID = ( 0.97314 -0.23022 0.00000 ) INS-61301_TOFxPH_V3_CENTROID = ( 0.97314 0.23022 0.00000 ) INS-61301_TOFxPH_V4_CENTROID = ( 0.76571 0.64319 0.00000 ) INS-61301_TOFxPH_V5_CENTROID = ( 0.39635 0.91810 0.00000 ) INS-61301_ION_V0_CENTROID = ( 0.30603 -0.95202 0.00000 ) INS-61301_ION_V1_CENTROID = ( 0.70016 -0.71398 0.00000 ) INS-61301_ION_V2_CENTROID = ( 0.94642 -0.32293 0.00000 ) INS-61301_ION_V3_CENTROID = ( 0.99080 0.13537 0.00000 ) INS-61301_ION_V4_CENTROID = ( 0.82413 0.56641 0.00000 ) INS-61301_ION_V5_CENTROID = ( 0.48298 0.87563 0.00000 ) INS-61301_ELECTRON_V0_CENTROID = ( 0.48298 -0.87563 0.00000 ) INS-61301_ELECTRON_V1_CENTROID = ( 0.82413 -0.56641 0.00000 ) INS-61301_ELECTRON_V2_CENTROID = ( 0.99080 -0.13537 0.00000 ) INS-61301_ELECTRON_V3_CENTROID = ( 0.94642 0.32293 0.00000 ) INS-61301_ELECTRON_V4_CENTROID = ( 0.70016 0.71398 0.00000 ) INS-61301_ELECTRON_V5_CENTROID = ( 0.30603 0.95202 0.00000 ) INS-61302_TOFxPH_V0_CENTROID = ( 0.39635 -0.91810 0.00000 ) INS-61302_TOFxPH_V1_CENTROID = ( 0.76571 -0.64319 0.00000 ) INS-61302_TOFxPH_V2_CENTROID = ( 0.97314 -0.23022 0.00000 ) INS-61302_TOFxPH_V3_CENTROID = ( 0.97314 0.23022 0.00000 ) INS-61302_TOFxPH_V4_CENTROID = ( 0.76571 0.64319 0.00000 ) INS-61302_TOFxPH_V5_CENTROID = ( 0.39635 0.91810 0.00000 ) INS-61302_ION_V0_CENTROID = ( 0.30603 -0.95202 0.00000 ) INS-61302_ION_V1_CENTROID = ( 0.70016 -0.71398 0.00000 ) INS-61302_ION_V2_CENTROID = ( 0.94642 -0.32293 0.00000 ) INS-61302_ION_V3_CENTROID = ( 0.99080 0.13537 0.00000 ) INS-61302_ION_V4_CENTROID = ( 0.82413 0.56641 0.00000 ) INS-61302_ION_V5_CENTROID = ( 0.48298 0.87563 0.00000 ) INS-61302_ELECTRON_V0_CENTROID = ( 0.48298 -0.87563 0.00000 ) INS-61302_ELECTRON_V1_CENTROID = ( 0.82413 -0.56641 0.00000 ) INS-61302_ELECTRON_V2_CENTROID = ( 0.99080 -0.13537 0.00000 ) INS-61302_ELECTRON_V3_CENTROID = ( 0.94642 0.32293 0.00000 ) INS-61302_ELECTRON_V4_CENTROID = ( 0.70016 0.71398 0.00000 ) INS-61302_ELECTRON_V5_CENTROID = ( 0.30603 0.95202 0.00000 ) INS-61303_TOFxPH_V0_CENTROID = ( 0.39635 -0.91810 0.00000 ) INS-61303_TOFxPH_V1_CENTROID = ( 0.76571 -0.64319 0.00000 ) INS-61303_TOFxPH_V2_CENTROID = ( 0.97314 -0.23022 0.00000 ) INS-61303_TOFxPH_V3_CENTROID = ( 0.97314 0.23022 0.00000 ) INS-61303_TOFxPH_V4_CENTROID = ( 0.76571 0.64319 0.00000 ) INS-61303_TOFxPH_V5_CENTROID = ( 0.39635 0.91810 0.00000 ) INS-61303_ION_V0_CENTROID = ( 0.30603 -0.95202 0.00000 ) INS-61303_ION_V1_CENTROID = ( 0.70016 -0.71398 0.00000 ) INS-61303_ION_V2_CENTROID = ( 0.94642 -0.32293 0.00000 ) INS-61303_ION_V3_CENTROID = ( 0.99080 0.13537 0.00000 ) INS-61303_ION_V4_CENTROID = ( 0.82413 0.56641 0.00000 ) INS-61303_ION_V5_CENTROID = ( 0.48298 0.87563 0.00000 ) INS-61303_ELECTRON_V0_CENTROID = ( 0.48298 -0.87563 0.00000 ) INS-61303_ELECTRON_V1_CENTROID = ( 0.82413 -0.56641 0.00000 ) INS-61303_ELECTRON_V2_CENTROID = ( 0.99080 -0.13537 0.00000 ) INS-61303_ELECTRON_V3_CENTROID = ( 0.94642 0.32293 0.00000 ) INS-61303_ELECTRON_V4_CENTROID = ( 0.70016 0.71398 0.00000 ) INS-61303_ELECTRON_V5_CENTROID = ( 0.30603 0.95202 0.00000 ) \begintext End of the IK file.