
Note on the Issue in compiling
SPICE C Library in MacOS M1
Apple Silicon

R.Manikantan, ISTRAC/ISRO 7 Apr 2021

I was trying to compile the C version of the SPICE Library, version N0066 on
my MacBook Air 2020 with M1 Apple Silicon chip, running macOS BigSur
11.2.3

There were issues in setting up the C compiler environment properly in this
platform - just to even get gcc and getting the Hello-World program
compiled properly. Those details are in the Appendix that follows, in case
you need some help with that.

But this one is about the ERROR that I got even after having my Compiler
environment setup OK:

Compiling: inquire.c

inquire.c:24:7: error: implicit declaration of function
'access'

 [-Werror,-Wimplicit-function-declaration]

 x = access(buf,0) ? -1 : 0;

 ^

I made a quick search of which header-file gives the access() function
declaration, and it was unistd.h

Just adding a #include line for this header-file in inquire.c solved the

issue.

1

I untar-ed the C library cspice.tar.Z freshly, went to the cspice/src/

cspice directory, added this #include.

The “diff -c” output of the old (inquire.c.bkup) and newer version

(inquire.c) of this file look as follows:

*** inquire.c.bkup	 Wed Apr 7 22:51:14 2021

--- inquire.c	 Wed Apr 7 22:51:22 2021

*** 1,6 ****

--- 1,7 ----

 #include "f2c.h"

 #include "fio.h"

 #include "string.h"

+ #include <unistd.h>

 #ifdef KR_headers

 integer f_inqu(a) inlist *a;

 #else

This was the only ERROR in the compilation process. However, there were
several warnings the compiler throws out such as:

1.

ckr02.c:648:29: warning: operator '<<' has lower
precedence than '-'; '-' will be evaluated first
 [-Wshift-op-parentheses]
 n = beg + (skip + index - 1 << 3);

               ~~~~~~~~~~~~~^~~ ~~
ckr02.c:648:29: note: place parentheses around the '-' 
expression to silence this warning

    n = beg + (skip + index - 1 << 3);


and


2.

        if(n=c_dfe(a))return(n);


2



           ~^~~~~~~~~
dfe.c:97:6: note: place parentheses around the assignment 
to silence this warning

        if(n=c_dfe(a))return(n);

            ^
           (         )
dfe.c:97:6: note: use '==' to turn this assignment into 
an equality comparison


I think we can safely ignore these warnings as I am certain that the code-
authors know C operator precedence and the behaviour with ‘=‘ in place of 
‘==‘ etc., are exactly as intended only. It is just that the compiler on MacOS 
warns on this, just in case; but we know what we have done, and this can be 
ignored.


SUMMARY 
Why we need to explicitly include unistd.h only in the MacOS Apple Silicon 
version of the library puzzles me, because, the #include for unistd.h is 

missing in MacOS on Intel Platform too, and the access() function is 

declared in the unistd.h file only, in Intel platform as well (I checked on my 

older Intel MacBook Pro). Somehow explicit inclusion of unistd.h seems to 

be mandatory on MacOS Apple Silicon, and doing this makes it all go 
through.


I have done some minimal testing with simple programs that generate AZEL 
angles, and calculate Light Time Solution using the SPICE library, and I get 
identical results (upto 6th decimal) with my programs on MacOS Intel and 
MacOX Apple Silicon.


3



APPENDIX: 

C Compiler Environment on 


MacOS M1 Apple Silicon / BigSur 11.2


The following steps were required to get the native C Compiler environment 
working on Apple Silicon. All these were learnt from several Google searches 
and helpful web-sites. Thanks to them!


1. Get Xcode installed.

You should be able to get it from Mac App Store. As on date, the version is 
12.4


2.   Install Command-line tools:  

sudo xcode-select  —install


did it for me.


3. Set SDKROOT environment variable to point to the MacOSX SDK

Xcode comes with SDKs for MacOSX, iPhone, AppleTV, watchOS and all 
their suite. We need the MacOSX SDK here.


We may try to figure it out dynamically,

export SDKROOT=$(xcrun --sdk macosx —show-sdk-path)

 

or, as I have done, set it manually to the correct place (based on the output I 
saw with the above command):


export SDKROOT=/Applications/Xcode.app/Contents/
Developer/Platforms/MacOSX.platform/Developer/SDKs/
MacOSX.sdk


4



4. Set Developer directory environment variable. Again this may be done 
dynamically with xcode-select command, or statically (based on the 

dynamic output), as I have done here:

# Do, once only, manually for all users:

# sudo xcode-select -s /Applications/Xcode.app/Contents/
Developer

# or set it on per-user basis

export DEVELOPER_DIR=/Applications/Xcode.app/Contents/
Developer


5. At this point, you should have gcc going and should be able to test it 
with a quick Hello-World C program. Actually, it turns out that the C  
compiler installed here is the one called “clang”, and gcc, cc all seem to 
just be links to it. But I don’t know much more about it.


Note that we have not added any new entry to the PATH / 
LD_LIBRARY_PATH variable. I am using the macOS Terminal application, 
and it seems to figure out the necessary PATHs from just the SDKROOT and 
DEVELOPER_DIR environment variables.


5


	SUMMARY

